论文

CMIP6模式对青藏高原气候的模拟能力评估与预估研究

  • 陈炜 ,
  • 姜大膀 ,
  • 王晓欣
展开
  • 中国科学院大气物理研究所, 北京 100029;中国科学院大学地球与行星科学学院, 北京 100049

收稿日期: 2021-01-25

  网络出版日期: 2021-12-28

基金资助

第二次青藏高原综合科学考察研究项目(2019QZKK0101)

Evaluation and Projection of CMIP6 Models for Climate over the Qinghai-Xizang Tibetan Plateau

  • CHEN Wei ,
  • JIANG Dabang ,
  • WANG Xiaoxin
Expand
  • Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China;College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2021-01-25

  Online published: 2021-12-28

摘要

利用国际耦合模式比较计划第六阶段(CMIP6)模拟试验数据, 首先评估了45个全球气候模式对1985 -2014年青藏高原地表气温和降水的模拟能力, 表明CMIP6模式能合理地模拟地表气温的空间分布, 但大部分模式对年和季节平均地表气温的模拟值偏低, 年均偏冷2.1 ℃, 冷偏差在冬季和春季相对更大。CMIP6模式对青藏高原降水的模拟能力较为有限, 尽管它们能模拟出年均降水东多西少的空间分布特征, 但普遍存在高估, 尤其是在春季和夏季, 年均降水较观测偏多397.8 mm·a-1。基于模拟性能较好的模式, 相比于1995 -2014年, 在共享社会经济路径(SSPs)中等偏低情景SSP2-4.5下, 青藏高原年均地表气温在21世纪90年代上升2.5 ℃, 2015 -2100年的线性趋势平均为0.28 ℃·(10a)-1, 其中秋季和冬季增幅更大, 高海拔区增暖幅度高于低海拔区。年均降水在21世纪90年代将增加12.8%, 2015 -2100年的线性趋势平均为1.56%·(10a)-1, 其中春季增幅最大, 高原北部边界区为降水增加的大值区。相较SSP2-4.5情景, SSP5-8.5情景下青藏高原地表气温和降水增幅更大, 21世纪90年代年均地表气温升高5.1 ℃, 降水增加30.2%, 两者在2015 -2100年的线性趋势平均分别为0.64 ℃·(10a)-1和3.80%·(10a)-1。整体上, 模式对地表气温和降水预估结果的不确定性均随时间增大。

本文引用格式

陈炜 , 姜大膀 , 王晓欣 . CMIP6模式对青藏高原气候的模拟能力评估与预估研究[J]. 高原气象, 2021 , 40(6) : 1455 -1469 . DOI: 10.7522/j.issn.1000-0534.2021.zk003

Abstract

Based on the numerical experiments undertaken by 45 Coupled Model Intercomparison Project Phase 6 (CMIP6) global climate models, we first evaluate the model performance in simulating the temperature and precipitation climatology over the Qinghai-Xizang (Tibetan) Plateau for the period 1985 -2014.Results show that the CMIP6 models can reasonably reproduce the climatological spatial patterns of annual and seasonal temperatures.Most models underestimate annual and seasonal temperatures, with an average of -2.1 ℃ for the annual mean and greater cold biases for winter and spring.The CMIP6 models perform poorly in reproducing annual and seasonal precipitation.They can reasonably reproduce the climatological spatial pattern of annual and seasonal precipitation, but obvious overestimation exists, especially for spring and summer, with a value of 397.8 mm a-1 for the annual mean.Furthermore, based on the preferred models, annual temperature over the Qinghai-Xizang (Tibetan) Plateau is projected to increase by 2.5 ℃ in the 2090s relative to 1995 -2014, with a trend of 0.28 ℃ per decade during 2015 -2100 under the Shared Society-economic Pathways (SSPs) 2 -4.5 scenario.Larger warming occurs in autumn and winter, and this holds for the high-altitude areas.Annual precipitation increases by 12.8% in the 2090s, with a trend of 1.56% per decade during 2015 -2100 under SSP2-4.5.Generally, larger increase in precipitation occurs in spring and in the northern border area of the Tibetan Plateau throughout the 21st century.Comparatively, annual and seasonal temperatures and precipitation have larger increases under the SSP5-8.5 scenario, and the corresponding magnitudes are 5.1 ℃ and 30.2% in the end of the 21st century, with a trend of 0.64 ℃ and 3.80% per decade, respectively.Overall, the inter-model uncertainty of the projected temperature and precipitation changes increases over time.

参考文献

[1]EyringV, BonyS, MeehlG A, alet, 2016.Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization[J].Geoscientific Model Development, 9(5): 1937-1958.DOI: 10.5194/gmd-9-1937-2016.
[2]EyringV, CoxP M, FlatoG M, 2019.Taking climate model evaluation to the next level[J].Nature Climate Change, 9(2): 102-110.DOI: 10.1038/s41558-018-0355-y.
[3]GuoD L, WangH J, 2012.The significant climate warming in the northern Tibetan Plateau and its possible causes[J].International Journal of Climatology, 32(12): 1775-1781.DOI: 10.1002/joc.2388.
[4]HansenJ, SatoM, RuedyR, alet, 2000.Global warming in the twenty-first century: an alternative scenario[J].Proceedings of the National Academy of Sciences of the United States of America, 97(18): 9875-9880.DOI: 10.1073/pnas.170278997.
[5]HuaS, LiuY Z, JiaR, alet, 2018.Role of clouds in accelerating cold-season warming during 2000-2015 over the Tibetan Plateau[J].International Journal of Climatology, 38(13): 4950-4966.DOI: 10.1002/joc.5709.
[6]IPCC.Climate Change 2013.The Physical Science Basis[R].Cambridge: Cambridge University Press, 2013.DOI: 10.1007/BF00524943.
[7]JiaK, RuanY F, YangY Z, alet, 2019.Assessment of CMIP5 GCM simulation performance for temperature projection in the Tibetan Plateau[J].Earth and Space Science, 6(12).DOI: 10.1029/2019EA000962.
[8]LiuX D, ChenB D, 2000.Climatic warming in the Tibetan Plateau during recent decades[J].International Journal of Climatology, 20(14): 1729-1742.DOI: 10.1002/1097-0088 (20001130)20: 14<1729: AID-JOC556>3.0.CO; 2-Y.
[9]MeehlG A, SeniorA C, EyringV, alet, 2020.Context for interpreting equilibrium climate sensitivity and transient climate response from the CMIP6 Earth system models[J].Science Advances, 6(26): 1-10.DOI: 10.1126/sciadv.aba1981.
[10]O’NeillB C, KrieglerE, RiahiK, alet, 2014.A new scenario framework for climate change research: the concept of shared socioeconomic pathways[J].Climatic Change, 122(3): 387-400.DOI: 10.1007/s10584-013-0905-2.
[11]PalazziE, MortariniL, TerzagoS, alet, 2019.Elevation-dependent warming in global climate model simulations at high spatial resolution[J].Climate Dynamics, 52: 2685-2702.DOI: 10.1007/s00382-018-4287-z.
[12]QuX, HuangG, ZhuL H, 2019.The CO2-induced sensible heat changes over the Tibetan Plateau from November to April[J].Climate Dynamics, 53: 5623-5635.DOI: 10.1007/s00382-019-04887-x.
[13]RiahiK, van VuurenD P, KrieglerE, alet, 2016.The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: an overview global[J].Global Environment Change, 42: 153-168.DOI: 10.1016/j.gloenvcha. 2016.05.009.
[14]StevensB, SherwoodS C, BonyS, alet, 2016.Prospects for narrowing bounds on earth’s equilibrium climate sensitivity[J].Earth’s Future, 4(11): 512-522.DOI: 10.1002/2016EF.
[15]SuF G, DuanX L, ChenD L, alet, 2013.Evaluation of the global climate models in the CMIP5 over the Tibetan Plateau[J].Journal of Climate, 26(10): 3187-3208.DOI: 10.1175/JCLI-D-12-00321.1000376.
[16]TaylorK E, StoufferR J, MeehlG A, 2012.An overview of CMIP5 and the experiment design[J].Bulletin of the American Meteorological Society, 93(4): 485-498.DOI: 10.1175/BAMS-D-11-00094.1.
[17]van VuurenD P, EdmondsJ, KainumaM, alet, 2011.The representative concentration pathways: an overview[J].Climatic Change, 109: 5-31.DOI: 10.1007/s10584-011-0148-z.
[18]WangB, BaoQ, HoskinsB, alet, 2008.Tibetan plateau warming and precipitation changes in East Asia[J].Geophysical Research Letters, 35(14): L1470214.DOI: 10.1029/2008GL034330.
[19]WangS P, WangZ H, PiaoS L, alet, 2010.Regional differences in the timing of recent air warming during the past four decades in China[J].Chinese Science Bulletin, 55(19): 1968-1973.DOI: 10.1007/11434-010-3236-y>.
[20]XuY, XuC H, 2012.Preliminary assessment of simulations of climate changes over China by CMIP5 multi-models[J].Atmospheric and Oceanic Science Letters, 5(6): 489-494.DOI: 10.1080/16742834.2012.11447041.
[21]YouQ L, MinJ Z, KangS C, 2016.Rapid warming in the Tibetan Plateau from observations and CMIP5 models in recent decades[J].International Journal of Climatology, 36(6): 2660-2670.DOI: 10.1002/joc.4520.
[22]ZhaoT B, GuoW D, FuC B, 2008.Calibrating and evaluating reanalysis surface temperature error by topographic correction[J].Journal of Climate, 21(6): 1440-1446.DOI: 10.1175/2007JCLI1463.1.
[23]ZhouX J, ZhaoP, ChenJ M, alet, 2009.Impacts of thermodynamic processes over the Tibetan Plateau on the Northern Hemispheric climate[J].Science in China Series D: Earth Sciences, 52(11): 1679-1693.DOI: 10.1007/s11430-009-0194-9.
[24]蔡英, 李栋梁, 汤懋苍, 等, 2003.青藏高原近50年来气温的年代际变化[J].高原气象, 22(5): 464-470.
[25]丁一汇, 张莉, 2008.青藏高原与中国其他地区气候突变时间的比较[J].大气科学, 32(4): 794-805.DOI: 10.3878/j.issn.1006-9895.2008.04.08.
[26]冯晓莉, 申艳红, 李万志, 等, 2020.1961 -2017年青藏高原暖湿季节极端降水时空变化特征[J].高原气象, 39(4): 694-705, DOI: 10.7522/j.issn.1000-0534.2020.00029.
[27]韩熠哲, 马伟强, 王炳赟, 等, 2017.青藏高原近30年降水变化特征分[J].高原气象, 36(6): 1477-1486.DOI: 10.7522/j.issn.1000-0534.2016.00125.
[28]胡芩, 姜大膀, 范广洲, 2014.CMIP5全球气候模式对青藏高原地区气候模拟能力评估[J].大气科学, 38(5), 924-938.DOI: 10.3878/j.issn.1006-9895.2013.13197.
[29]胡芩, 姜大膀, 范广洲, 2015.青藏高原未来气候变化预估: CMIP5模式结果[J].大气科学, 39(2), 260-270.DOI: 10.3878/j.issn.1006-9895.1406.13325.
[30]王顺久, 2017.青藏高原积雪变化及其对中国水资源系统影响研究进展[J].高原气象, 36(5), 1153-1164.DOI: 10.7522/j.issn. 1000-0534.2016.00117.
[31]吴国雄, 刘屹岷, 刘新, 等, 2005.青藏高原加热如何影响亚洲夏季的气候格局 [J].大气科学, 29(1), 47-56.
[32]吴佳, 高学杰, 2013.一套格点化的中国区域逐日观测资料及其与其它资料的对比[J].地球物理学报, 56(4), 1102-1111.
[33]郑然, 李栋梁, 蒋元春, 2015.全球变暖背景下青藏高原气温变化的新特征[J].高原气象, 34(6), DOI: 10.7522/j.issn.1000-0534.2014.00123.
文章导航

/