青藏高原多圈层地气相互作用过程研究进展和回顾

  • 马耀明 ,
  • 胡泽勇 ,
  • 王宾宾 ,
  • 马伟强 ,
  • 陈学龙 ,
  • 韩存博 ,
  • 李茂善 ,
  • 仲雷 ,
  • 谷良雷 ,
  • 孙方林 ,
  • 赖悦 ,
  • 刘莲 ,
  • 谢志鹏 ,
  • 韩熠哲 ,
  • 袁令 ,
  • 姚楠 ,
  • 石兴东
展开
  • 中国科学院青藏高原研究所青藏高原地球系统与资源环境国家重点实验室地气作用与气候效应团队,北京 100101;中国科学院西北生态环境资源研究院,甘肃 兰州 730000;成都信息工程大学,四川 成都 610225;中国科学技术大学地球和空间科学学院,安徽 合肥 230026;中国科学院大学,北京 100101;中国科学院环境变化与地表过程重点实验室,中国科学院青藏高原研究所,北京 100101;兰州大学大气科学学院,甘肃 兰州 730000

收稿日期: 2021-04-12

  修回日期: 2021-06-07

  网络出版日期: 2021-12-28

基金资助

国家自然科学基金项目(91837208, 42075085); 第二次青藏高原综合科学考察研究项目(2019QZKK0103); 中国科学院战略性先导科技(A类)专项(XDA20060101)

The Review of the Observation Experiments on Land-Atmosphere Interaction Progress on the Qinghai-Xizang Tibetan Plateau

  • MA Yaoming ,
  • HU Zeyong ,
  • WANG Binbin ,
  • MA Weiqiang ,
  • CHEN Xuelong ,
  • HAN Cunbo ,
  • LI Maoshan ,
  • ZHONG Lei ,
  • GU Lianglei ,
  • SUN Fanglin ,
  • LAI Yue ,
  • LIU Lian ,
  • XIE Zhipeng ,
  • HAN Yizhe ,
  • YUAN Ling ,
  • YAO Nan ,
  • SHI Xingdong
Expand
  • Land-Atmoshere Interaction and its Climatic Effects Group, State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China;Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China;Chengdu University of Information Technology, Chengdu 610225, Sichuan, China;School of Earth and Space Sciences, University of Science Technology of China, Hefei 230026, Anhui, China;University of Chinese Academy of Sciences, Beijing 100101, China;Research Centre of Environment Change and land surface processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China;College of atmospheric science, Lanzhou University, Lanzhou 730000, Gansu, China

Received date: 2021-04-12

  Revised date: 2021-06-07

  Online published: 2021-12-28

摘要

青藏高原高大的地形条件, 使得其具有十分显著的动力作用和热力作用, 这导致高原地表与大气之间的相互作用和大气边界层发展过程对高原及周边地区的天气过程和气候变化的影响至关重要。自20世纪60年代, 特别是1979年以来, 人们先后开展了“第一次青藏高原气象科学试验(QXPMEX)”、 “第二次青藏高原大气科学试验(TIPEX-Ⅱ)”、 “全球能量水循环亚洲季风青藏高原试验研究(GAME/Tibet)”、 “全球协调加强观测计划亚澳季风之青藏高原试验(CAMP/Tibet)”、 “青藏高原观测研究平台”(TORP)及“第三次青藏高原大气科学试验(TIPEX-Ⅲ)”等观测研究项目, 地气相互作用过程以及大气边界层过程的观测分析、 数值模拟及卫星遥感应用研究都是其中最重要的研究内容。本文以地气相互作用研究为主线, 回顾了40年来历次重大青藏高原大气科学试验, 系统归纳总结了陆面过程和大气边界层过程观测试验, 分别从地气相互作用过程观测研究、 大气边界层过程观测研究、 地面和大气热源观测与估算研究、 地表蒸散发遥感估算研究以及地气相互作用过程数值模拟研究等方向, 对相关研究成果进行了简要的归纳梳理, 并且针对野外观测、 资料分析以及模式发展方面存在的不足进行了讨论, 同时对青藏高原地气相互作用研究在这几个方面未来的发展进行了展望。

本文引用格式

马耀明 , 胡泽勇 , 王宾宾 , 马伟强 , 陈学龙 , 韩存博 , 李茂善 , 仲雷 , 谷良雷 , 孙方林 , 赖悦 , 刘莲 , 谢志鹏 , 韩熠哲 , 袁令 , 姚楠 , 石兴东 . 青藏高原多圈层地气相互作用过程研究进展和回顾[J]. 高原气象, 2021 , 40(6) : 1241 -1262 . DOI: 10.7522/j.issn.1000-0534.2021.zk006

Abstract

Featured with high topography, the Qinghai-Xizang (Tibetan) Plateau (QXP) shows very significant dynamic and efficient thermal effects, and the land-atmosphere interaction and the atmospheric boundary layer processes are very important for the weather development and climate change over the QXP and its surrounding regions.Since the 1960s, especially after 1979, a series of observation and research programs have been conducted, including "the Qinghai-Xizang Plateau Meteorological Science Experiment (QXPMEX) ", " The Second Tibetan Plateau Scientific Experiment (TIPEX-Ⅱ)", "the Global Energy and Water Cycle Experiment (GEWEX), the Asian Monsoon Experiment on the Tibetan Plateau(GAME/Tibet)", "the Coordinated Enhanced Observing Period (CEOP) Asia-Australia Monsoon Project on the Tibetan Plateau(CAMP/Tibet)", "the Tibetan Observation and Research Platform (TORP)", and "The Third Tibetan Plateau Atmospheric Scientific Experiment (TIPEX-Ⅲ)", where the observation analysis, numerical simulation and satellite application of the land-atmosphere interaction and the atmospheric boundary layer processes are the most important contents.Here, we reviewed the major atmospheric scientific experiments over the QXP in the past 40 years and summarized the observation experiments of the land-atmosphere interaction and the atmospheric boundary layer processes systematically.The relevant results are briefly summarized in 5 aspects, including the land-atmosphere interaction process, the atmospheric boundary layer process, the surface and atmospheric heat sources, satellite application of land evapotranspiration, numerical simulation of land surface processes.

参考文献

[1]BaoQ, LiuY M, ShiJ C, alet, 2010.Comparisons of soil moisture datasets over the Tibetan Plateau and application to the simulation of Asia summer monsoon onset[J].Advances in Atmospheric Sciences, 27: 303-314.
[2]ChenX L, SuZ B, MaY M, alet, 2012.Analysis of land-atmosphere interactions over the north region of Mt.Qomolangma (Mt.Everest)[J].Arctic, Antarctic, and Alpine Research, 44: 412-422.
[3]ChenX L, MaY M, KelderH, alet, 2011.On the behaviour of the tropopause folding events over the Tibetan Plateau [J].Atmosphore Chemistry Physics, 11: 5113-5122.
[4]ChenX L, SuZ B, MaY M, alet, 2013a.Estimation of surface energy fluxes under complex terrain of Mt.Qomolangma over the Tibetan Plateau[J].Hydrology and Earth System Sciences, 17: 1607-1618.
[5]ChenX L, SuZ B, MaY M, alet, 2014.Development of a 10-year (2001-2010) 0.1° data set of land-surface energy balance for mainland China[J].Atmospheric Chemistry and Physics, 14: 13097-13117.
[6]ChenX L, A?elJ A, SuZ B, alet, 2013b.The deep atmospheric boundary layer and its significance to the stratosphere and troposphere exchange over the Tibetan Plateau[J].PLoS One, 8: e56909.
[7]ChenX L, ?kerlakB, RotachM W, alet, 2016.Reasons for the extremely high-ranging planetary boundary layer over the western Tibetan Plateau in winter[J].Journal of the Atmospheric Sciences, 73: 2021-2038.
[8]ChenY Y, YangK, ZhouD G, alet, 2010.Improving the noah land surface model in arid regions with an appropriate parameterization of the thermal roughness length[J].Journal of Hydrometeorology, 11: 995-1006.
[9]CuiY F, DuanA M, LiuY M, alet, 2015.Interannual variability of the spring atmospheric heat source over the Tibetan Plateau forced by the North Atlantic SSTA[J].Climate Dynamics, 45: 1-18.
[10]DengH J, PepinN C, ChenY N, 2017.Changes of snowfall under warming in the Tibetan Plateau[J].Journal of Geophysical Research: Atmospheres, 122(14): 7323-7341.
[11]DuanA M, WangM R, XiaoZ X, 2014.Uncertainties in quantitatively estimating the atmospheric heat source over the Tibetan Plateau[J].Atmospheric and Oceanic Science Letters.7(1): 28-33.
[12]DuanA M, LiF, WangM R, alet, 2011.Persistent Weakening trend in the spring sensible heat source over the Tibetan Plateau and its impact on the Asian summer monsoon[J].Journal of Climate, 24(21): 5671-5682.
[13]FlohnH, 1957.Large-scale aspects of the "Summer Monsoon" in South and East Asia[J].Journal of the Meteorological Society of Japan (Ser.II, 35A: 180-186.
[14]GaoY H, LiK, ChenF, alet, 2015.Assessing and improving Noah‐MP land model simulations for the central Tibetan Plateau[J].Journal of Geophysical Research: Atmospheres, 120: 9258- 9278,
[15]GaoZ Q, LenschowD H, HeZ J, alet, 2009.Seasonal and diurnal variations in moisture, heat, and CO2 fluxes over a typical steppe prairie in inner Mongolia, China[J].Hydrology and Earth System Sciences, 6(2): 987-998.
[16]GuoY H, ZhangY S, MaN, alet, 2016.Quantifying surface energy fluxes and evaporation over a significant expanding endorheic lake in the central Tibetan Plateau[J].Journal of the Meteorological Society of Japan (Ser.II), 94: 453-465.
[17]HanC B, MaY M, ChenX L, alet, 2017.Trends of land surface heat fluxes on the Tibetan Plateau from 2001 to 2012[J].International Journal of Climatology, 37(14): 4757-4767.
[18]HuZ Y, ChengG D, QianZ Y, alet, 2004.Cooling effect of ballast revetment on the roadbed of Qinghai-Tibetan Railway[J], Science in China (Earth Sciences), 47(Suppl): 161-167.
[19]HuangW F, ChengB, ZhangJ R, alet, 2019.Modeling experiments on seasonal lake ice mass and energy balance in the Qinghai-Tibet Plateau: A case study[J].Hydrology and Earth System Sciences, 23: 2173-2186.
[20]JiaL, SuZ B, VanD.H B, et al, 2003.Estimation of sensible heat flux using the surface energy balance system (sebs) and atsr measurements[J].Physics & Chemistry of the Earth, 28(1): 75-88.
[21]JiangX W, LiY Q, YangS, alet, 2015.Interannual variation of summer atmospheric heat source over the Tibetan Plateau and the role of convection around the western Maritime Continent[J].Journal of Climate, 15: D150181.
[22]LaiY, ChenX L, MaY M, alet, 2021.Impacts of the westerlies on planetary boundary layer growth over a valley on the north side of the central Himalayas[J].Journal of Geophysical Research: Atmospheres, 126(3): D033928.
[23]Lazhu, YangK, WangJ B, alet, 2016.Quantifying evaporation and its decadal change for Lake Nam Co, central Tibetan Plateau[J].Journal of Geophysical Research: Atmospheres, 121: 7578-7591.
[24]LiC F, YanaiM, 1996.The onset and interannual variability of the Asian summer monsoon in relation to land-sea thermal contrast[J].Journal of Climate, 9: 358-375.
[25]LiL, ZhangR H, WenM, alet, 2018.Effect of the atmospheric quasi-biweekly oscillation on the vortices moving off the Tibetan Plateau[J].Climate Dynamics, 50: 1193-1207.
[26]LiM S, BabelW, ChenX L, alet, 2015a.A 3-year dataset of sensible and latent heat fluxes from the Tibetan Plateau, derived using eddy covariance measurements[J].Theoretical and Applied Climatology, 122: 457-469.
[27]LiX Y, MaY J, HuangY M, alet, 2016.Evaporation and surface energy budget over the largest high-altitude saline lake on the Qinghai-Tibet Plateau[J].Journal of Geophysical Research: Atmospheres, 121: 10470-10485.
[28]LiZ L, TangR L, WanZ M, alet, 2009.A review of current methodologies for regional evapotranspiration estimation from remotely sensed data[J].Sensors, 9: 3801-3853.
[29]LiZ G, LyuS H, AoY H, alet, 2015b.Long-term energy flux and radiation balance observations over Lake Ngoring, Tibetan Plateau[J].Atmospheric Research, 155: 13-25.
[30]LiuL, MaY M, YaoN, alet, 2021.Diagnostic analysis of a regional heavy snowfall event over the Tibetan Plateau using NCEP reanalysis data and WRF[J].Climate Dynamics, 56(7/8): 2451-2467.
[31]LiuL, MaY M, MenentiM, alet, 2019.Evaluation of WRF modeling in relation to different land surface schemes and initial and boundary conditions: A snow event simulation over the Tibetan Plateau[J].Journal of Geophysical Research: Atmospheres, 124: 209- 226.
[32]LiuL P, FengJ M, ChuR Z, alet, 2002.The diurnal variation of precipitation in monsoon season in the Tibetan Plateau[J].Advances in Atmospheric Sciences, 19: 365-378.
[33]LuoH B, YanaiM, 1984.The large-scale circulation and heat sources over the Tibetan Plateau and surrounding areas during the early summer of 1979.Part II: Heat and moisture budgets[J].Monthly Weather Review, 112(5): 966-989.
[34]LunL, ZhangR H, WenM, alet, 2014.Effect of the atmospheric heat source on the development and eastward movement of the Tibetan Plateau vortices[J].Tellus Series A-dynamic Meteorology & Oceanography, 66: 419-439.
[35]MaY M, OsamuT, HirohikoI, alet, 2002a.Analysis of aerodynamic and thermodynamic parameters on the grassy marshland surface of Tibetan plateau[J].Progress in Natural Science: Materials International, 12(1): 36-40.
[36]MaN, SzilagyiJ, NiuG Y, alet, 2016.Evaporation variability of Nam Co Lake in the Tibetan Plateau and its role in recent rapid lake expansion[J].Journal of Hydrology, 537: 27-35.
[37]MaW Q, MaY M, SuZ B, 2011.Feasibility of retrieving land surface heat fluxes from ASTER data using SEBS: A case study from the Nam Co area of the Tibetan Plateau[J].Arctic Antarctic & Alpine Research.
[38]MaW Q, MaY M, 2016.Modeling the influence of land surface flux on the regional climate of the Tibetan Plateau[J].Theoretical and Applied Climatology, 125(1/2): 45-52.
[39]MaY M, MassimoM, ReinderF, 2010.Parameterization of heat fluxes at heterogeneous surfaces by integrating satellite measurements with surface layer and atmospheric boundary layer observations[J].Advances in Atmospheric Sciences, 27: 328-336.
[40]MaY M, ZhongL, WangY J, alet, 2012.Using NOAA/AVHRR data to determine regional net radiation and soil heat fluxes over the heterogeneous landscape of the Tibetan Plateau[J].International Journal of Remote Sensing, 33: 4784-4795.
[41]MaY M, SuZ B, LiZ L, alet, 2002b.Determination of regional net radiation and soil heat flux over a heterogeneous landscape of the Tibetan Plateau[J].Hydrological Processes, 16(15): 2963-2971.
[42]MaY M, OsamuT, WangJ M, alet, 2002c.Analysis of aerodynamic and thermodynamic parameters on the grassy marshland surface of Tibetan Plateau[J].Progress in Natural Science: Materials International, 12: 36-40.
[43]MaY M, HanC B, ZhongL, alet, 2014a.Using MODIS and AVHRR data to determine regional surface heating field and heat flux distributions over the heterogeneous landscape of the Tibetan Plateau[J].Theoretical & Applied Climatology, 117: 643-652.
[44]MaY M, KangS C, ZhuL P, alet, 2008.Tibetan observation and research platform-atmosphere-land interaction over a heterogeneous landscape[J], Bulletin of the American Meteorological Society, 89: 1487-1492.
[45]MaY M, ZhongL, SuZ, alet, 2006.Determination of regional distributions and seasonal variations of land surface heat fluxes from Landsat-7 Enhanced Thematic Mapper data over the central Tibetan Plateau area[J].Journal of Geophysical Research: Atmospheres, 111: D10305.
[46]MaY M, FanS, IshikawaH, alet, 2005.Diurnal and inter-monthly variation of land surface heat fluxes over the central Tibetan Plateau area[J].Theoretical & Applied Climatology, 80(2): 259-273.
[47]MaY M, ZhuZ K, ZhongL, alet, 2014b.Combining Modis, Avhrr and in situ data for evapotranspiration estimation over heterogeneous landscape of the Tibetan plateau[J].Atmospheric Chemistry and Physics, 14(3): 1507-1515.
[48]MaY M, MaW Q, ZhongL, alet, 2017.Monitoring and modeling the Tibetan plateau's climate system and its impact on east Asia[J].Scientific Reports, 7: 44574.
[49]MaY M, HuZ Y, XieZ P, alet, 2020.A long-term (2005-2016) dataset of hourly integrated land-atmosphere interaction observations on the Tibetan Plateau[J].Earth System Science Data, 12: 2937-2957.
[50]PengJ, LoewA, ChenX L, alet, 2016.Comparison of satellite-based evapotranspiration estimates over the Tibetan Plateau[J].Hydrology and Earth System Sciences, 20: 3167-3182.
[51]QiuJ, 2008.China: The third pole[J].Nature, 454: 393-396.
[52]RaupachM R, 1998.Influence of local feedbacks on land-air exchange of energy and carbon[J].Global Change Biology, 4: 477-494.
[53]SchiemannR, LüthiD, Sch?rC, 2009.Seasonality and interannual variability of the westerly jet in the Tibetan Plateau region[J].Journal of Climate, 22(11): 2940-2957.
[54]ShiQ, LiangS, 2014.Surface-sensible and latent heat fluxes over the Tibetan Plateau from ground measurements, reanalysis, and satellite data[J].Atmospheric Chemistry and Physics, 14: 5659-5677.
[55]ShimizuS, Ken'ichiU, HideyukiF, alet, 2001.Mesoscale characteristics and structures of stratiform precipitation on the Tibetan Plateau[J].Journal of the Meteorological Society of Japan, 79: 435-461.
[56]SunF L, MaY M, LiM S, alet, 2007.Boundary layer effects above a Himalayan valley near Mount Everest[J].Geophysical Research Letters, 34(8): L08808.
[57]SunF L, MaY M, HuZ Y, alet, 2017a.Observation of strong winds on the northern slopes of Mount Everest in monsoon season[J].Arctic Antarctic & Alpine Research, 49: 687-697.
[58]SunF L, MaY M, HuZ Y, alet, 2017b.Mechanism of daytime strong winds on the northern slopes of Himalayas, near Mount Everest: Observation and simulation[J].Journal of Applied Meteorology & Climatology, JAMC-D-16-0409.0401.
[59]SunG H, HuZ Y, MaY M, alet, 2020.Analysis of local land-atmosphere coupling in rainy season over a typical underlying surface in Tibetan Plateau based on field measurements and ERA5[J].Atmospheric Research, 243: 105025.
[60]TanakaK, IshikawaH, HayashiT, alet, 2001.Surface energy budget at Amdo on the Tibetan Plateau using GAME/Tibet IOP98 data[J].Journal of the Meteorological Society of Japan, 79: 505-517.
[61]UedaH, KamahoriH, YamazakiN, 2003.Seasonal contrasting features of heat and moisture budgets between the eastern and western Tibetan Plateau during the GAME IOP[J].Journal of Climate, 16(14): 2309-2324.
[62]WangB B, MaY M, WangY, alet, 2019.Significant differences exist in lake-atmosphere interactions and the evaporation rates of high-elevation small and large lakes[J].Journal of Hydrology, 573: 220-234.
[63]WangB B, MaY M, SuZ B, alet, 2020a.Quantifying the evaporation amounts of 75 high-elevation large dimictic lakes on the Tibetan Plateau[J].Science Advances, 6: eaay8558.
[64]WangB B, MaY M, ChenX L, alet, 2015.Observation and simulation of lake-air heat and water transfer processes in a high-altitude shallow lake on the Tibetan Plateau[J].Journal of Geophysical Research: Atmospheres, 120: 12327-12344.
[65]WangG X, LinS, HuZ Y, alet, 2020b.Improving actual evapotranspiration estimation integrating energy consumption for ice phase change across the Tibetan Plateau[J].Journal of Geophysical Research Atmospheres, 125(3).DOI: 10.1029/2019JD031799.
[66]WangJ B, HuangL, JuJ T, alet, 2020.Seasonal stratification of a deep, high-altitude, dimictic lake: Nam Co, Tibetan plateau[J].Journal of Hydrology, 584: 124668.
[67]WangJ, ZhangM J, WangS J, alet, 2016.Decrease in snowfall/rainfall ratio in the Tibetan Plateau from 1961 to 2013[J].Journal of Geographical Sciences, 26(9): 1277-1288.
[68]WangM R, ZhouS W, DuanA M, 2012.Trend in the atmospheric heat source over the central and eastern Tibetan Plateau during recent decades: Comparison of observations and reanalysis data[J].Chinese Science Bulletin, 57: 548-557.
[69]WangM D, HouJ Z, LeiY B, 2014.Classification of Tibetan lakes based on variations in seasonal lake water temperature[J].Chinese Science Bulletin, 59: 4847-4855.
[70]WangS Z, MaY M, 2018.On the simulation of sensible heat flux over the Tibetan Plateau using different thermal roughness length parameterization schemes[J].Theoretical and Applied Climatology, 137: 1883-1893.
[71]WuG X, ZhangY S, 1998.Tibetan Plateau forcing and the timing of the monsoon onset over south Asia and the South China Sea[J].Monthly Weather Review, 126: 913-927.
[72]WuQ B, ZhangT J, 2010.Changes in active layer thickness over the Qinghai‐Tibetan Plateau from 1995 to 2007[J].Journal of Geophysical Research: Atmospheres, 2010, 115(D9): D09107.DOI: 10.1029/2009JD012974.
[73]XieZ P, HuZ Y, XieZ H, alet, 2018.Impact of the snow cover scheme on snow distribution and energy budget modeling over the Tibetan Plateau[J].Theoretical & Applied Climatology, 131: 951-965.
[74]XieZ P, HuZ Y, MaY M, alet, 2019.Modeling blowing snow over the Tibetan Plateau with the Community Land Model: Method and preliminary evaluation[J].Journal of Geophysical Research: Atmospheres, 124: D030684.DOI: 10.1029/2019JD030684.
[75]XuX D, ZhangR H, KoikeT, alet, 2008.A new integrated observational system over the Tibetan Plateau[J].Bulletin of the American Meteorological Society, 89: 1492-1496.
[76]YanaiM, LiC F, 1994.Mechanism of heating and the boundary layer over the Tibetan Plateau[J].Monthly Weather Review, 122: 305.
[77]YangM X, YaoT D, GouX H, alet, 2003.The soil moisture distribution, thawing-freezing processes and their effects on the seasonal transition on the Qinghai-Xizang (Tibetan) plateau[J].Journal of Asian Earth Sciences, 21(5): 457-465.
[78]YangK, ChenY Y, QinJ, 2009.Some practical notes on the land surface modeling in the Tibetan Plateau[J].Hydrology and Earth System Sciences, 13: 687-701.
[79]YangK, WuH, QinJ, alet, 2014.Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review[J].Global and Planetary Change, 112: 79-91.
[80]YangK, KoikeT, IshikawaH, alet, 2008.Turbulent flux transfer over bare-soil surfaces: characteristics and parameterization[J].Journal of Applied Meteorology & Climatology, 47(1): 276-290.
[81]YuS M, LiuJ S, XuJ Q, alet, 2011.Evaporation and energy balance estimates over a large inland lake in the Tibet-Himalaya[J].Environmental Earth Sciences, 64: 1169-1176.
[82]ZhangR H, KoikeT, XuX D, alet, 2012.A China-Japan cooperative JICA atmospheric observing network over the Tibetan Plateau (JICA/Tibet Project): An overview[J].Journal of the Meteorological Society of Japan.90C: 1-16.
[83]ZhongL, MaY M, HuZ Y, alet, 2019.Estimation of hourly land surface heat fluxes over the Tibetan Plateau by the combined use of geostationary and polar-orbiting satellites[J].Atmospheric Chemistry and Physics, 19: 5529-5541.
[84]ZhongL, MaY M, SuZ B, alet, 2009.Land-atmosphere energy transfer and surface boundary layer characteristics in the Rongbu Valley on the northern slope of Mt.Everest[J].Arctic Antarctic & Alpine Research, 41: 396-405.
[85]ZhongL, HuangZ Y, MaY M, alet, 2021.Assessments of WRF land surface models in precipitation simulation over the Tibetan Plateau[J].Earth and Space Science, 8(3).DOI: 10.1029/2020EA001565.
[86]ZhouS Q, KangS C, ChenF, alet, 2013.Water balance observations reveal significant subsurface water seepage from Lake Nam Co, south-central Tibetan Plateau[J].Journal of Hydrology, 491: 89-99.
[87]ZhouX, YangK, WangY, 2018.Implementation of a turbulent orographic form drag scheme in WRF and its application to the Tibetan Plateau[J].Climate Dynamics, 50: 2443-2455.
[88]ZhouX, YangK, BeljaarsA, alet, 2019.Dynamical impact of parameterized turbulent orographic form drag on the simulation of winter precipitation over the western Tibetan Plateau[J].Climate Dynamics, 53: 707-720.
[89]ZhuL P, XieM P, WuY H, 2010.Quantitative analysis of lake area variations and the influence factors from 1971 to 2004 in the Nam Co basin of the Tibetan Plateau[J].Chinese Science Bulletin, 55: 1294-1303.
[90]ZouH, MaS P, ZhouL B, alet, 2009.Measured turbulent heat transfer on the northern slope of Mt.Everest and its relation to the south Asian summer monsoon[J].Geophysical Research Letters, 36: L09810.DOI: 10.1029/2008GL036984.
[91]ZouM J, ZhongL, MaY M, alet, 2018.Comparison of two satellite-based evapotranspiration models of the Nagqu River Basin of the Tibetan Plateau[J].Journal of Geophysical Research Atmospheres, 123(8): 3961-3975.
[92]陈海山, 孙照渤, 2005.青藏高原单点地气交换过程的模拟试验[J].高原气象, 24(1): 9-15.
[93]陈联寿, 徐祥德, 1998.1998年青藏高原第二次大气科学试验(TIPEX)陆气过程、 边界层观测预研究进展[R].Annual Report of CAMS, 20-21.
[94]陈瑞, 杨梅学, 万国宁, 等, 2020.基于水热变化的青藏高原土壤冻融过程研究进展[J].地理科学进展, 39(11): 1944-1958.
[95]陈学龙, 马耀明, 孙方林, 等, 2007.珠峰地区雨季对流层大气的特征分析[J].高原气象, 26(6): 1280-1286.
[96]陈学龙, 马耀明, 胡泽勇, 等, 2010.季风爆发前后青藏高原西部改则地区大气结构的初步分析[J].大气科学, 34(1): 83-94.
[97]除多, 洛桑曲珍, 林志强, 等, 2018.近30年青藏高原雪深时空变化特征分析[J].气象, 44(2): 233-243.
[98]丁永建, 叶佰生, 刘时银, 等, 2000.青藏高原大尺度冻土水文监测研究[J].科学通报, 45(2): 208-214.
[99]段安民, 刘屹岷, 吴国雄, 2003.4~6月青藏高原热状况与盛夏东亚降水和大气环流的异常[J].中国科学(地球科学), 33(10): 997-1004.
[100]段安民, 毛江玉, 吴国雄, 2004.孟加拉湾季风爆发可预测性的分析和初步应用[J].高原气象, 23(1): 18-25.
[101]冯锦明, 王致君, 楚荣忠, 等, 2001.青藏高原地面Doppler雷达与TRMM星载雷达测云比较[J].高原气象, 20(4): 345-353.
[102]何金海, 2011.青藏高原大气热源特征及其影响和可能机制[M].北京: 气象出版社.
[103]胡国杰, 赵林, 李韧, 等, 2014.青藏高原多年冻土区土壤冻融期间水热运移特征分析[J].土壤, 46(2): 355-360.
[104]胡伟, 马伟强, 马耀明, 等, 2020.GLDAS资料驱动的Noah-MP陆面模式青藏高原地表能量交换模拟性能评估[J].高原气象, 39 (3): 486-498.DOI: 10.7522/j.issn.1000-0534.2019.00060.
[105]胡隐樵, 高由禧, 王介民, 等, 1994.黑河实验((HEIFE))的一些研究成果[J].高原气象, 13(3): 225-236.
[106]胡泽勇, 马耀明, 刘黎平, 1998.中日合作成功进行“青藏高原能量水分循环试验”预试验[J].中国科学院院刊, 13(3): 224-225.
[107]胡泽勇, 钱泽雨, 程国栋, 等, 2002.太阳辐射对青藏铁路路基表面热状况的影响[J].冰川冻土, 24(2): 121-121.
[108]蒋文轩, 假拉, 肖天贵, 等, 2016.1971-2010年青藏高原冬季降雪气候变化及空间分布[J].冰川冻土, 38(5): 1211-1218.
[109]李栋梁, 李维京, 魏丽, 等, 2003.青藏高原地面感热及其异常的诊断分析[J].气候与环境研究, 8(1): 71-83.
[110]李茂善, 戴有学, 马耀明, 等, 2006.珠峰地区大气边界层结构及近地层能量交换分析[J].高原气象, 25(5): 807-813.
[111]李茂善, 马耀明, 胡泽勇, 等, 2004.藏北那曲地区大气边界层特征分析[J].高原气象, 23(5): 728-733.
[112]李茂善, 马耀明, 马伟强, 等, 2011.藏北高原地区干、 雨季大气边界层结构的不同特征[J].冰川冻土, 33(1): 72-79.
[113]李茂善, 阴蜀城, 刘啸然, 等, 2019: 近10年青藏高原及其周边湍流通量变化的数值模拟[J].高原气象, 38 (6): 1140-1148.DOI: 10.7522/j.issn.1000-0534.2018.00145.
[114]李茂善, 马耀明, 2008.藏北高原地表能量和边界层结构的数值模拟[J].高原气象, 27(1): 36-45.
[115]李韧, 赵林, 丁永建, 等, 2012.青藏公路沿线多年冻土区活动层动态变化及区域差异特征[J].科学通报, 57(30): 2864-2871.
[116]李燕, 刘新, 李伟平, 2012.青藏高原地区不同下垫面陆面过程的数值模拟研究[J].高原气象, 31(3): 581-591.
[117]刘辉志, 冯健武, 王雷, 等, 2013.大气边界层物理研究进展[J].大气科学, 37(2): 467-476.
[118]刘晓东, 罗四维, 钱永甫, 1989.青藏高原地表热状况对夏季东亚大气环流影响的数值模拟[J].高原气象, 8(3): 205-216.
[119]罗小青, 徐建军, 2019.青藏高原大气热源及其估算的不确定性因素[J].气候变化研究进展, 15(1): 33-40.
[120]罗斯琼, 吕世华, 张宇, 等, 2008.CoLM模式对青藏高原中部BJ站陆面过程的数值模拟[J].高原气象, 27(2): 259-271.
[121]吕雅琼, 马耀明, 李茂善, 等, 2008.青藏高原纳木错湖区大气边界层结构分析[J].高原气象, 27(6): 1205-1210.
[122]马丽娟, 秦大河, 2012.1957-2009年中国台站观测的关键积雪参数时空变化特征[J].冰川冻土, 34(1): 1-11.
[123]马伟强, 马耀明, 李茂善, 等, 2005a.藏北高原地区地表辐射出支和能量平衡的季节变化[J].冰川冻土, 27(5): 673-679.
[124]马伟强, 戴有学, 马耀明, 等, 2005b.利用无线电探空资料分析藏北高原地区边界层及其空间结构特征[J].干旱区资源与环境, 19(3): 40-46.
[125]马伟强, 戴有学, 马耀明, 等, 2007.珠峰北坡地区地表辐射和能量季节变化的初步分析[J].高原气象, 26(6): 1237-1243.
[126]马耀明, 姚檀栋, 王介民, 2006.青藏高原能量和水循环试验研究——GAME/Tibet与CAMP/Tibet研究进展[J].高原气象, 25(2): 344-351.
[127]马耀明, 塚本修, 吴晓鸣, 等, 2000.藏北高原草甸下垫面近地层能量输送及微气象特征[J].大气科学, 24(5): 715-722.
[128]马耀明, 胡泽勇, 田立德, 等, 2014.青藏高原气候系统变化及其对东亚区域的影响与机制研究进展[J].地球科学进展, 29(2): 207-215.
[129]钱永甫, 1993.气候变化中下垫面作用的数值模拟[J].大气科学, 17(3): 283-293.
[130]钱泽雨, 胡泽勇, 杜萍, 等, 2005.青藏高原北麓河地区近地层能量输送与微气象特征[J], 高原气象, 24(1): 43-48.
[131]孙方林, 马耀明, 马伟强, 等, 2006.珠峰地区大气边界层结构的一次观测研究[J].高原气象, 25(6): 1014-1019.
[132]王澄海, 师锐, 2007.青藏高原西部陆面过程特征的模拟分析[J].冰川冻土, 29(1): 73-81.
[133]王介民, 1999.陆面过程实验和地气相互作用研究——从HEIFE到IMGRASS和GAME-Tibet/TIPEX[J].高原气象, 18(3): 280-294.
[134]王介民, 王维真, 奥银焕, 等, 2007.复杂条件下湍流通量的观测与分析[J].地球科学进展, 22(8): 791-797.
[135]王树舟, 马耀明, 2008.珠峰地区夏季大气边界层结构初步分析[J].冰川冻土, 30(4): 681-687.
[136]韦志刚, 黄荣辉, 陈文, 等, 2002.青藏高原地面站积雪的空间分布和年代际变化特征[J].大气科学, 26(4): 496-508.
[137]吴国雄, 毛江玉, 段安民, 等, 2004.青藏高原影响亚洲夏季气候研究的最新进展[J].气象学报, 62(5): 528-540.
[138]吴国雄, 刘屹岷, 刘新, 等, 2005.青藏高原加热如何影响亚洲夏季的气候格局[J].大气科学, 29(1): 47-56.
[139]谢志鹏, 胡泽勇, 刘火霖, 等, 2017.陆面模式CLM4.5对青藏高原高寒草甸地表能量交换模拟性能的评估[J].高原气象, 36(1): 1-12.DOI: 10.7522/j.issn.1000-0534.2016.00012.
[140]徐祥德, 陈联寿, 2006.青藏高原大气科学试验研究进展[J].应用气象学报, 17(6): 756-772.
[141]徐祥德, 卞林根, 张光智, 等, 2001.青藏高原地-气过程动力、 热力结构综合物理图象[J].中国科学(地球科学), 31(5): 428-440.
[142]杨梅学, 姚檀栋, ichiUENOKen', 1999.青藏高原唐古拉山北坡夏季风降水特征的初步分析[J].冰川冻土, 21(3): 233-236.
[143]杨梅学, 姚檀栋, 勾晓华, 2000.青藏公路沿线土壤的冻融过程及水热分布特征[J].自然科学进展, 10(5): 443-450.
[144]杨梅学, 姚檀栋, 何元庆, 2002.青藏高原土壤水热分布特征及冻融过程在季节转换中的作用[J].山地学报, 20(5): 553-558.
[145]杨耀先, 李茂善, 2014.藏北高原高寒草甸地表粗糙度对地气通量的影响[J].高原气象, 33 (3): 626-636.DOI: 10.7522/j.issn. 1000-0534.2013.00199.
[146]姚济敏, 赵林, 丁永建, 等, 2008.2005年青藏高原唐古拉地区地表能量收支状况分析[J].冰川冻土, 30(1): 119-124.
[147]叶笃正, 高由禧, 1979.青藏高原气象学[M]. 北京: 科学出版社.
[148]叶笃正, 罗四维, 朱抱真, 1957.西藏高原及其附近的流场结构和对流层大气的热量平衡[J].气象学报, 28(2): 20-33.
[149]于淑秋, 王继志, 2006.中日气象灾害合作研究中心项目(JICA计划项目)正式启动实施[J].应用气象学报, 17(2): 191.
[150]张强, 2003.大气边界层气象学研究综述[J].干旱气象, 21(3): 74-78.
[151]张人禾, 徐祥德, 2012.青藏高原及东缘新一代大气综合探测系统应用平台——中日合作JICA项目[J].中国工程科学, 14(9): 102-112.
[152]张艳, 钱永甫, 2002.青藏高原地面热源对亚洲季风爆发的热力影响[J].南京气象学院学报, 25(3): 298-306.
[153]张宇, 吕世华, 2002.藏北高原陆面过程的模拟试验[J].大气科学, 26(3): 101-107.
[154]章基嘉, 朱抱真, 朱福康, 等, 1988.青藏高原气象学进展[M]. 北京: 科学出版社.
[155]赵平, 李跃清, 郭学良, 等, 2018.青藏高原地气耦合系统及其天气气候效应: 第三次青藏高原大气科学试验[J].气象学报, 76(6): 3-30.
[156]仲雷, 马耀明, 苏中波, 等, 2007.雨季前后珠峰地区近地层气象要素、 辐射及能量平衡分量变化特征[J], 高原气象, 26 (6): 1269-1275.
[157]周明煜, 徐祥德, 卞林根, 2000.青藏高原大气边界层观测分析与动力学研究[M]. 北京: 气象出版社.
[158]朱抱真, 1957.大尺度热源、 热汇和地形对西风带的常定扰动(一) [J].气象学报, 28(2): 122-140.
[159]朱春玲, 马耀明, 陈学龙, 2011.青藏高原西部及东南周边地区季风前大气边界层结构分析[J].冰川冻土, 33(2): 325-333.
[160]卓嘎, 徐祥德, 陈联寿, 2002.青藏高原边界层高度特征对大气环流动力学效应的数值试验[J].应用气象学报, 13(3): 163-169.
[161]赵林, 程国栋, 李述训, 等, 2000.青藏高原五道梁附近多年冻土活动层冻结和融化过程[J].科学通报, 45(11): 1205-1211.
[162]左洪超, 胡隐樵, 吕世华, 等, 2004.青藏高原安多地区干、 湿季的转换及其边界层特征[J].自然科学进展, 14(5): 535-540.
文章导航

/