论文

春季青藏高原大气热源季节内振荡特征及其维持机制

  • 刘伯奇 ,
  • 段亚楠 ,
  • 李健颖 ,
  • 毛江玉
展开
  • 中国气象科学研究院气候与气候变化研究所,北京 100081;中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室(LASG),北京 100029

收稿日期: 2021-02-24

  修回日期: 2021-04-29

  网络出版日期: 2021-12-28

基金资助

科技部科技基础资源调查专项(2019QZKK0105); 中国科学院战略性先导科技专项(XDB40000000); 国家自然科学基金项目(41775052, 41830969, 41730963)

Intraseasonal Oscillation of Atmospheric Heat Source over the Qinghai- Xizang Plateau in Boreal Spring and Its Maintaining Mechanism

  • LIU Boqi ,
  • DUAN Yanan ,
  • LI Jianying ,
  • MAO Jiangyu
Expand
  • Institute of Climate System, Chinese Academy of Meteorological Sciences, Beijing 100081, China;State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

Received date: 2021-02-24

  Revised date: 2021-04-29

  Online published: 2021-12-28

摘要

青藏高原大气热源在春季的形成, 标志着高原对区域和全球天气气候热力强迫的开始。本文基于1981 -2010年台站观测和JRA-55大气环流再分析资料, 研究了春季青藏高原大气热源季节内尺度的时空变化特征。发现高原大气热源在春季存在显著的10~20天准双周振荡, 在空间分布上表现为纬向偶极子型与单极子型异常模态之间的交替出现。其中, 偶极子模态表现为凝结潜热异常在高原西北部和东南部的反相变化, 而单极子模态则表现为高原上空感热异常一致性变化。在单极子模态的位相下, 高原感热异常势必诱发低层环流异常, 改变了高原东、 西部的水汽输送, 从而引起局地降水和凝结潜热异常, 产生偶极子型的大气热源分布; 随后, 这种偶极子型大气热源异常又导致近地面纬向风调整, 令高原整体感热异常不断加强, 造成水汽输送再次改变, 凝结潜热加热随之逐渐减弱, 由此高原大气热源恢复单极子模态。因此, 春季高原上空感热、 凝结潜热和局地环流的相互作用是维持高原大气热源准双周振荡的关键机制。

本文引用格式

刘伯奇 , 段亚楠 , 李健颖 , 毛江玉 . 春季青藏高原大气热源季节内振荡特征及其维持机制[J]. 高原气象, 2021 , 40(6) : 1419 -1431 . DOI: 10.7522/j.issn.1000-0534.2021.zk020

Abstract

The formation of atmospheric heat source over the Qinghai-Xizang Plateau (QXP) in boreal spring indicates the beginning of the QXP thermal forcing on regional and global weather and climate.Based on the JRA-55 atmospheric reanalysis and station-based observation data from 1981 to 2010, the present study investigated the spatial and intraseasonal variations of the spring atmospheric heat source over the QXP.A significant 10-20-day intraseasonal oscillation (ISO) was found in the atmospheric heat source over the QXP in boreal spring.It featured an alternation between zonal dipole and monopole mode of the spring atmospheric heat source over the QXP.The dipole mode was characterized by the inverse change of anomalous condensation latent heat between the northwestern and southeastern QXP.While the monopole mode exhibited a predominantly positive or negative sensible heat anomalies over the QXP.In the phases with the dominant monopole mode, the anomalous sensible heat over the QXP could produce the low-level circulation anomaly.It gave rise to the distinct water vapor transport between the eastern and western QXP, inducing the opposite variation of the local precipitation and condensation latent heat anomaly over the eastern and western QXP.The ISO thus entered its zonal dipole mode.As the atmospheric response to the anomalous condensation latent heat in the zonal dipole mode, the near-surface zonal wind was changed to facilitate the sensible heat anomaly over the QXP.In turn, the water vapor transport was altered over the eastern and western QXP but reversed its original property.As a result, the condensation latent heat anomaly decreased gradually over the QXP.On the one hand, the zonal dipole mode started to weaken.On the other hand, the response of the near-surface wind to the zonally asymmetric condensation heat anomaly could enhance the anomalous sensible heat over the QXP.Therefore, the atmospheric heat source over the QXP returned to the monopole mode with the homogeneous sensible heat anomaly.Finally, the interaction among sensible heat, condensation latent heat and local circulation maintained the quasi-biweekly ISO of the atmospheric heat source over the QXP in boreal spring.In addition, the zonal dipole mode of the quasi-biweekly ISO of the atmospheric heat source over the QXP led the significant anomaly of spring rainfall to the south of the Yangtze River by one phase (about 3 days).It implicated that the biweekly ISO over the QXP could be treated as a potential subseasonal predicting precursor of the spring rainfall over East China.

参考文献

[1]AbeM, HoriM, YasunariT, alet, 2013.Effects of the Qinghai-Xizang Plateau on the onset of the summer monsoon in South Asia: the role of the air-sea interaction [J].Journal of Geophysical Research: Atmosphere, 118: 1760-1776.
[2]AjayamohanR S, AnnamalaiH, LuoJ J, alet, 2011.Poleward propagation of boreal summer intraseasonal oscillations in a coupled model: role of internal processes [J].Climate Dynamics, 37: 851-867.
[3]AndersonJ R, RosenR D, 1983.The latitude-height structure of 40-50-day variations in atmospheric angular momentum [J].Journal of the Atmospheric Sciences, 40(6): 1584-1591.
[4]BrethertonC S, WidmannM, DymnikovV P, alet, 1999.The effective number of spatial degrees of freedom of a time-varying field [J].Journal of Climate, 12(7): 1990-2009.
[5]ChenG T J, 1994.Large-scale circulations associated with the East Asian summer monsoon and the Meiyu over South China and Taiwan [J].Journal of the Meteorological Society of Japan, 72(6): 959-983.
[6]DingY H, 2007.The variability of the Asian summer monsoon [J].Journal of the Meteorological Society of Japan, 85B: 21-54.
[7]DuanA M, WuG X, 2008.Weakening trend in the atmospheric heat source over the Qinghai-Xizang Plateau during recent decades.Part I: Observations [J].Journal of Climate, 21(13): 3149-3164.
[8]DuanA M, LiuS F, ZhaoY, alet, 2018.Atmospheric heat source/sink dataset over the Qinghai-Xizang Plateau based on satellite and routine meteorological observations [J].Big Earth Data, 2(2): 179-189.
[9]DuchonC, 1979.Lanczos filtering in one and two Dimensions [J].Journal of the Applied Meteorology, 18(8): 1016-1022.
[10]FlohnH, 1957.Large-scale aspects of the ‘summer monsoon’ in South and East Asia [J].Journal of the Meteorological Society of Japan, 35A: 180-186.
[11]FujinamiH, YasunariT, 2004.Submonthly variability of convection and circulation over and around the Qinghai-Xizang Plateau during the boreal summer [J].Journal of the Meteorological Society of Japan, 82(6): 1545-1564.
[12]GhilM, AllenM R, DettingerMD, alet, 2002.Advanced spectral methods for climatic time series [J].Reviews of Geophysics, 40(1), 1003, DOI: 10.1029/2001RG000092.
[13]GhilM, MoK, 1991.Intraseasonal oscillations in the global atmosphere.Part I: Northern Hemisphere and tropics [J].Journal of the Atmospheric Sciences, 48(5): 752-779.
[14]HaradaY, KamahoriH, KobayashiC, alet, 2016.The JRA-55 reanalysis: representation of atmospheric circulation and climate variability [J].Journal of the Meteorological Society of Japan, 94(3): 269-302.
[15]HeH J, McGinnisW, SongZ S, alet, 1987.Onset of the Asian summer monsoon in 1979 and the effect of the Qinghai-Xizang Plateau [J].Monthly Weather Review, 115(9): 1966-1995.
[16]HsuH H, LiuX, 2003.Relationship between the Qinghai-Xizang Plateau heating and East Asian summer monsoon rainfall [J].Geophysical Research Letters, 30, 2066.DOI: 10.1029/2003GL017909.
[17]HuJ, DuanA M, 2015.Relative contributions of the Qinghai-Xizang Plateau thermal forcing and the Indian Ocean Sea surface temperature basin mode to the interannual variability of the East Asian summer monsoon [J].Climate Dynamics, 45: 2697-2711.
[18]HuW T, DuanA M, LiY, alet, 2016.The intraseasonal oscillation of eastern Qinghai-Xizang Plateau precipitation in response to the summer Eurasian wave train [J].Journal of Climate, 29(20): 7215-7230.
[19]JiangX A, LiT, WangB, 2004.Structures and mechanisms of the northward propagating boreal summer intraseasonal oscillation [J].Journal of Climate, 17(5): 1022-1039.
[20]Kemball-CookS, WangB, 2001.Equatorial waves and air-sea interaction in the boreal summer intraseasonal oscillation [J].Journal of Climate, 14(13): 2923-2942.
[21]KnutsonT R, WeickmannK M, 1987.30-60-day atmospheric oscillations: composite life cycles of convection and circulation anomalies [J].Monthly Weather Review, 115(7): 1407-1436.
[22]KobayashiS, OtaY, HaradaY, alet, 2015.The JRA-55 reanalysis: general specifications and basic characteristics [J].Journal of the Meteorological Society of Japan, 93(1): 5-48.
[23]KrishnamurtiT, GadgilS, 1985.On the structure of the 30 to 50 day mode over the globe during FGGE [J].Tellus, 37(4): 336-360.
[24]LeeJ Y, WangB, WheelerM C, alet, 2013.Real-time multivariate indices for the boreal summer intraseasonal oscillation over the Asian summer monsoon region [J].Climate Dynamics, 40: 493-509.
[25]LiC F, YanaiM, 1996.The onset and interannual variability of the Asian summer monsoon in relation to land-sea thermal contrast [J].Journal of Climate, 9(2): 358-375.
[26]LiG P, DuanT Y, GongY F, 2000.The bulk transfer coefficients and surface fluxes on the western Qinghai-Xizang Plateau [J].Chinese Science Bulletin, 45(13): 1221-1226.
[27]LiJ Y, MaoJ Y, WuG X, 2015.A case study of the impact of boreal summer intraseasonal oscillations on Yangtze rainfall [J].Climate Dynamics, 44: 2683-2702.
[28]LiJ Y, MaoJ Y, 2019.Coordinated influences of the tropical and extratropical intraseasonal oscillations on the 10-30-day variability of the summer rainfall over southeastern China [J].Climate Dynamics, 53: 137-153.
[29]LinHoL H, HuangX L, LauN C, 2008.Winter-to-spring transition in East Asia: A planetary-scale perspective of the south China spring rain onset [J].Journal of Climate, 21(13): 3081-3096.
[30]LiuB Q, LiuY M, WuG X, alet, 2015.Asian summer monsoon onset barrier and its formation mechanism [J].Climate Dynamics, 45: 711-726.
[31]LiuB Q, WuG X, MaoJ Y, alet, 2013.Genesis of the South Asian high and its impact on the Asian summer monsoon onset [J].Journal of Climate, 26(9): 2976-2991.
[32]LuoH B, YanaiM, 1984.The large-scale circulation and heat sources over Qinghai-Xizang Plateau and surrounding areas during early summer of 1979, Part II: heat and moisture budgets [J].Monthly Weather Review, 112(5): 966-989.
[33]MaddenR A, JulianP R, 1971.Detection of a 40-50-dayoscillation in the zonal wind in the tropical Pacific[J].Journal of the Atmospheric Sciences, 28(5): 702-708.
[34]MaoJ Y, WuG X, 2006.Intraseasonal variations of the Yangtze rainfall and its related atmospheric circulation features during the 1991 summer [J].Climate Dynamics, 27: 815-830.
[35]NorthG R, BellT L, CahalanR F, alet, 1982.Sampling Errors in the Estimation of Empirical Orthogonal Functions [J].Monthly Weather Review, 110(7): 699-706.
[36]McPhadenM J, 2003.Tropical Pacific Ocean heat content variations and ENSO persistence barriers [J].Geophysical Research Letters, 30, 1480.DOI: 10.1029/2003GL016872.
[37]MoninA S, ObukhovA M, 1954.Basic laws of turbulent mixing in the atmosphere near the ground [J].Tr Akad Nauk SSSR Geofiz Institute, 24(151): 163-187.
[38]MurakamiT, 1958.The sudden change of upper westerlies near the Qinghai-Xizang Plateau at the beginning of summer season [J].Journal of the Meteorological Society of Japan, 36(6): 239-247.
[39]MurakamiT, 1988.Intraseasonal Atmospheric Teleconnection Patterns during the Northern Hemisphere Winter [J].Journal of Climate, 1(2): 117-131.
[40]PanW J, MaoJ Y, WuG X, 2013.Characteristics and Mechanism of the 10-20--Day Oscillation of Spring Rainfall over Southern China [J].Journal of Climate, 26(14): 5072-5087.
[41]RenX J, YangD J, YangX Q, 2015.Characteristics and mechanisms of the subseasonal eastward extension of the South Asian High [J].Journal of Climate, 28(17): 6799-6822.
[42]TamuraT, TaniguchiK, KoikeT, 2010.Mechanism of upper tropospheric warming around the Qinghai-Xizang Plateau at the onset phase of the Asian summer monsoon [J].Journal of Geophysical Research: Atmosphere, 115, D02106.DOI: 10.1029/2008JD011678.
[43]TianS F, YasunariT, 1998.Climatological aspects and mechanism of spring persistent rains over central China [J].Journal of the Meteorological Society of Japan, 76(1): 57-71.
[44]UedaH, YasunariT, 1998.Role of warming over the Qinghai-Xizang Plateau in early onset of the summer monsoon over the Bay of Bengal and the South China Sea [J].Journal of the Meteorological Society of Japan, 76(1): 1-12.
[45]WangJ Y, YangX Q, FangJ B, alet, 2018.Role of Air-Sea Interaction in the 30-60-Day Boreal Summer Intraseasonal Oscillation over the Western North Pacific [J].Journal of Climate, 31(4): 1653-1680.
[46]WangM R, DuanA M, 2015.Quasi-biweekly oscillation over the Qinghai-Xizang Plateau and its link with the Asian summer monsoon [J].Journal of Climate, 28(12): 4921-4940.
[47]WheelerM C, HendonH H, 2004.An all-season real-time multivariate MJO index: development of an index for monitoring and prediction [J].Monthly Weather Review, 132(8): 1917-1932.
[48]WuG X, LiuY M, ZhangQ, alet, 2007.The influence of mechanical and thermal forcing by the Qinghai-Xizang Plateau on Asian climate [J].Journal of Hydrometeorology, 8(4): 770-789.
[49]WuG X, GuanY, LiuY M, alet, 2012.Air-sea interaction and formation of the Asian summer monsoon onset vortex over the Bay of Bengal [J].Climate Dynamics, 38: 261-279.
[50]WuG X, ZhangY S, 1998.Qinghai-Xizang Plateau forcing and the timing of the monsoon onset over South Asian and the South China Sea [J].Monthly Weather Review, 126(4): 913-927.
[51]YanaiM, LiC F, SongZ S, 1992.Seasonal heating of the Qinghai-Xizang Plateau and its effects of the evolution of the Asian summer monsoon [J].Journal of the Meteorological Society of Japan, 70(1B): 319-351.
[52]YangJ, BaoQ, WangB, alet, 2017.Characterizing two types of transient intraseasonal oscillations in the Eastern Qinghai-Xizang Plateau summer rainfall [J].Climate Dynamics, 48: 1749-1768.
[53]YangJ, BaoQ, WangB, alet, 2013.Distinct quasi-biweekly features of the subtropical East Asian monsoon during early and late summers [J].Climate Dynamics, 42: 1469-1486.
[54]YangS Y, LiT, 2016.Intraseasonal variability of air temperature over the mid-high latitude Eurasia in boreal winter [J].Climate Dynamics, 47: 2155-2175.
[55]YehT C, 1950.The circulation of the high troposphere over China in the winter of 1945-1946 [J].Tellus, 2(3): 173-183.
[56]YinM T, 1949.A synoptic-aerologic study of the onset of the summer monsoon over India and Burma [J].Journal of Meteorology, 6(6): 393-400.
[57]冯晓莉, 申红艳, 李万志, 等, 2020.1961 -2017年青藏高原暖湿季节极端降水时空变化特征[J].高原气象, 39(4): 694-705.DOI: 10.7522/j.issn.1000-0534.2020.00029.
[58]胡娅敏, 翟盘茂, 罗晓玲, 等, 2014.2013年华南前汛期持续性强降水的大尺度环流与低频信号特征[J].气象学报, 72(3): 465-477.
[59]林爱兰, 纪忠萍, 谷德军, 等, 2016.大气季节内振荡在华南降水预报中的应用[J].热带气象学报, 32(6): 878-889.
[60]万日金, 吴国雄.2006.江南春雨的气候成因机制研究[J].中国科学(地球科学), 36(10): 936-950.
[61]许建伟, 高艳红, 彭保发, 等, 2020.1979-2016年青藏高原降水的变化特征及成因分析[J].高原气象, 39(2): 234-244.DOI: 10.7522/j.issn.1000-0534.2019.00029.
[62]叶笃正, 罗四维, 朱抱真, 1957.西藏高原及其附近的流场结构和对流层大气的热量平[J].气象学报, 28(2): 108-121.
[63]叶笃正, 高由禧, 1979.青藏高原气象学[M].北京: 科学出版社, 1-278.
[64]张璐, 王慧, 石兴东, 等, 2020.青藏高原中东部地表感热趋势转折特征及成因分析[J].高原气象, 39(5): 912-924.DOI: 10. 7522/j.issn.1000-0534.2020.00050.
[65]赵平, 陈隆勋, 2001.35年来青藏高原大气热源气候特征及其与中国降水的关系[J].中国科学(地球科学), 31(4): 327-332.
[66]祝从文, 周秀骥, 赵平, 等, 2011.东亚副热带夏季风建立与中国汛期开始时间[J].中国科学(地球科学), 41(8): 1172-1181.
[67]竺夏英, 刘屹岷, 吴国雄, 2012.夏季青藏高原多种地表感热通量资料的评估[J].中国科学(地球科学), 42 (7): 1104-1112.
文章导航

/