论文

基于CLM4.5的高寒草地辐射收支和水热交换的数值模拟研究

  • 吴笛 ,
  • 胡泽勇 ,
  • 付春伟 ,
  • 王树金 ,
  • 樊威伟
展开
  • 1. 中国科学院西北生态环境资源研究院 寒旱区陆面过程与气候变化重点实验室,甘肃 兰州 730000
    2. 中国科学院西北生态环境资源研究院 那曲高寒气候环境观测研究站,西藏 那曲 852000
    3. 中国科学院大学,北京 100049

吴笛(1996 -), 男, 四川绵阳人, 硕士研究生, 主要从事陆面过程的数值模拟研究. E-mail:

收稿日期: 2020-09-24

  修回日期: 2021-05-20

  网络出版日期: 2022-03-17

基金资助

第二次青藏高原综合科学考察研究项目(2019QZKK0103); 国家自然科学基金项目(91837208); 中国科学院战略性先导科技专项(XDA2006010101); 国家重点研发计划项目(2018YFC1505701)

A Simulation Study on Radiation Budget and Water-Heat Exchange over Alpine Grassland Based on CLM4.5

  • Di WU ,
  • Zeyong HU ,
  • Chunwei FU ,
  • Shujing WANG ,
  • Weiwei FAN
Expand
  • 1. Key laboratory of Land Surface Process and Climate Change in Cold and Arid Regions,Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences,Lanzhou 730000,Gansu,China
    2. Nagqu Station of Plateau Climate and Environment,Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences,Nagqu 852000,Xizang,China
    3. University of Chinese Academy of Sciences,Beijing 100049,China

Received date: 2020-09-24

  Revised date: 2021-05-20

  Online published: 2022-03-17

摘要

利用那曲高寒气候环境观测研究站本部BJ观测点2014年6 -8月的近地层观测资料, 结合CLM4.5陆面模型, 探究空气动力学粗糙长度、 叶面积指数、 植被覆盖度和热力学粗糙长度参数化方案的改变对陆面能水平衡的模拟结果产生的影响, 并且探讨了粗糙度及植被状态指数影响陆面能水平衡模拟性能的机制。结果表明: (1)CLM4.5默认的热力学粗糙长度方案Z98高估了感热通量, 并且低估了地表温度, Z12方案和B82方案能够很大程度上减小感热模拟的正偏差与地表温度模拟的负偏差。(2)基于不同类型数据计算了两组空气动力学粗糙长度的月均值, 在替换模式中原有值后, 明显减小了地表通量的模拟偏差。(3)叶面积指数的增加(减少), 使感热减小(增大), 潜热增大(减小), 反射辐射和地面长波辐射通量降低(增加), 并且土壤温湿度也有所下降(上升)。(4)随着植被覆盖度的增加(减少), 潜热通量降低(升高), 感热、 反射短波辐射以及地面长波辐射增强(减弱), 地面土壤温、 湿度有所增加(降低)。本研究为选择最优参数及参数化方案,进而更合理地模拟出整个高原地区的地表能水平衡提供了参考依据。

本文引用格式

吴笛 , 胡泽勇 , 付春伟 , 王树金 , 樊威伟 . 基于CLM4.5的高寒草地辐射收支和水热交换的数值模拟研究[J]. 高原气象, 2022 , 41(1) : 107 -121 . DOI: 10.7522/j.issn.1000-0534.2021.00045

Abstract

Forced by observations from 1 June to 31 August 2014, which are provided by Naqu station of Plateau Climate and Environment in northern Qinghai-Xizang Plateau, CLM4.5 is used to evaluate the influence on simulated results of both radiation balance and exchange of water-heat after some surface parameters and parameterization schemes including LAI、 vegetation coverage and roughness length have changed.The reason for these changes are also discussed in this article.The results suggested that (1) Compared with the results produced by default scheme Z98, those of schemes named Z12 and B82 perform better in decreasing the positive bias of latent heat fluxes and negative bias of sensible heat fluxes.(2) aerodynamic roughness length calculated by revised Massman model and a method named “Chen” are respectively used to replace the default value, the outcomes produced by CLM approach the observations further.(3)With leaf area index increasing, sensible heat fluxes and reflected radiation and surface long-wave radiation decrease a lot, while latent heat fluxes are on the increase.(4)As the vegetation cover increases, latent fluxes decreases, while sensible heat fluxes and reflected radiation and surface long-wave radiation rise, meanwhile soil temperature and moisture also rise.The aim of this study is to provide a basis for future ambition to simulate the balance of ground surface water and heat over the whole Plateau.

参考文献

null
Brutsaert W A1982.Evaporation into the Atmosphere[M].Springer Netherlands.
null
Chen F Zhang Y2009.On the coupling strength between the land surface and the atmosphere: From viewpoint of surface exchange coefficients[J].Geophysical Research Letters36 (10). DOI: 10.1029/2009GL037980.
null
Chen X Su Z Ma Y al et2013.An improvement of roughness height parameterization of the Surface Energy Balance System (SEBS) over the Tibetan Plateau[J].Journal of Applied Meteorology and Climatology52(3): 607-622.DOI: 10.1175/JAMC-D-12-056.1.
null
Chen Y Yang K He J al et2011.Improving land surface temperature modeling for dry land of China[J].Journal of Geophysical Research: Atmospheres, 116(D20).DOI: 10.1029/2011JD015921.
null
Kanda M Kanega M Kawai T al et2007.Roughness lengths for momentum and heat derived from outdoor urban scale models[J].Journal of Applied Meteorology and Climatology46 (7): 1067-1079. DOI: 10.1175/JAM2500.1.
null
Li M Liu X Shu L al et2021.Variations in surface roughness of heterogeneous surfaces in the Nagqu area of the Tibetan Plateau[J].Hydrology and Earth System Sciences25(5): 2915-2930.DOI: 10.5194/hess-25-2915-2021.
null
Ma Y Fan S Ishikawa H al et2005.Diurnal and inter-monthly variation of land surface heat fluxes over the central Tibetan Plateau area[J].Theoretical and Applied Climatology80(2-4): 259-273. DOI: 10.1007/s00704-004-0104-1.
null
Massman W J Weil J C1999.An analytical one-dimensional second-order closure model of turbulence statistics and the Lagrangian time scale within and above plant canopies of arbitrary structure[J].Boundary-Layer Meteorology91(1): 81-107.DOI: 10. 1023/A: 1001810204560.
null
Niu G Y Yang Z L Mitchell K E al et2011.The community Noah land surface model with multiparameterization options (Noah‐MP): 1.Model description and evaluation with local‐scale measurements[J].Journal of Geophysical Research: Atmospheres, 116 (D12). DOI: 10.1029/2010JD015139.
null
Sun G Hu Z Wang J al et2016.Upscaling analysis of aerodynamic roughness length based on in situ data at different spatial scales and remote sensing in north Tibetan Plateau[J].Atmospheric Research, 176: 231-239.DOI: 10.1016/j.atmosres.2016.02.025.
null
Sun J1999.Diurnal variations of thermal roughness height over a grassland[J].Boundary-Layer Meteorology92 (3): 407-427. DOI: 10.1023/A: 1002071421362.
null
Su Z2002.The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes[J].Hydrology and Earth System Sciences6 (1): 85-99.
null
Tanaka K Ishikawa H Hayashi T al et2001.Surface energy budget at Amdo on the Tibetan Plateau using GAME/Tibet IOP98 data[J].Journal of the Meteorological Society of Japan.Ser.II79 (1B): 505-517. DOI: 10.2151/jmsj.79.505.
null
Wang S Ma Y2019.On the simulation of sensible heat flux over the Tibetan Plateau using different thermal roughness length parameterization schemes[J].Theoretical and Applied Climatology137 (3-4): 1883-1893. DOI: 10.1007/s00704-018-2704-1.
null
Wu G Duan A Liu Y al et2015.Tibetan Plateau climate dynamics: recent research progress and outlook[J].National Science Review2(1): 100-116.DOIi: 10.1093/nsr/nwu045.
null
Yao T Xue Y Chen D al et2019.Recent third pole’s rapid warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment: Multidisciplinary approach with observations, modeling, and analysis[J].Bulletin of the American Meteorological Society100(3): 423-444.DOI: 10.1175/BAMS-D-17-0057.1.
null
Yang K Koike T Yang D2003.Surface flux parameterization in the Tibetan Plateau[J].Boundary-layer meteorology106 (2): 245-262. DOI: 10.1023/A: 1021152407334.
null
Yang K Koike T Ishikawa H al et2008.Turbulent flux transfer over bare-soil surfaces: Characteristics and parameterization[J].Journal of Applied Meteorology and Climatology47(1): 276-290.DOI: 10.1175/2007JAMC1547.1.
null
Yang K Chen Y Y Qin J2009.Some practical notes on the land surface modeling in the Tibetan Plateau[J].Hydrology and Earth System Sciences, 13, 5(2009-05-27), 13(5): 687-701.DOI: 10.5194/hess-13-687-2009.
null
Zeng X Barlage M Dickinson R E al et2005.Treatment of undercanopy turbulence in land models[J].Journal of Climate18 (23): 5086-5094. DOI: 10.1175/JCLI3595.1.
null
Zeng X Dickinson R E1998.Effect of surface sublayer on surface skin temperature and fluxes[J].Journal of Climate11 (4): 537-550.DOI: 10.1175/1520-0442(1998)011<0537: EOSSOS>2.0.CO; 2.
null
Zeng X Wang A2007.Consistent parameterization of roughness length and displacement height for sparse and dense canopies in land models[J].Journal of Hydrometeorology8 (4): 730-737. DOI: 10.1175/JHM607.1.
null
Zeng X Wang Z Wang A2012.Surface skin temperature and the interplay between sensible and ground heat fluxes over arid regions[J].Journal of Hydrometeorology13 (4): 1359-1370. DOI: 10.1175/JHM-D-11-0117.1.
null
Zheng D Van Der Velde R Su Z al et2014.Assessment of roughness length schemes implemented within the Noah land surface model for high-altitude regions[J].Journal of Hydrometeorology15 (3): 921-937. DOI: 10.1175/JHM-D-13-0102.1
null
Zilitinkevich S1995.Scaling for convective boundary layers[M]//Wind Climate in Cities.Springer, Dordrecht, 67-79.DOI: 10. 1007/978-94-017-3686-2_4
null
陈海山, 孙照渤, 等, 2005.青藏高原单点地气交换过程的模拟试验[J].高原气象24 (1): 9-15.
null
陈家宜, 王介民, 光田宁, 1993.一种确定地表粗糙度的独立方法[J].大气科学17(1): 21-26.doi: 10.3878/j.issn.1006-9895. 1993.01.03.
null
郭东林, 杨梅学, 屈鹏, 等, 2009.能量和水分循环过程研究: 回顾与探讨[J].冰川冻土31(6): 1116-1126.DOI: 10.11928/j.issn.1001-7410.2017.05.17.
null
季国良, 时兴和, 高务祥, 2001.藏北高原地面加热场的变化及其对气候的影响[J].高原气象20(3): 239-244.
null
贾东于, 文军, 马耀明, 等, 2017.植被对黄河源区水热交换影响的研究[J].高原气象36 (2): 424-435. DOI: 10.7522/j.issn. 1000-0534.2016.00044.
null
李锁锁, 吕世华, 柳媛普, 等, 2010.黄河上游玛曲地区空气动力学参数的确定及其在陆面过程模式中的应用[J].高原气象29(6): 1408-1413.
null
李英, 胡泽勇, 2006.藏北高原地表反照率的初步研究[J].高原气象25(6): 1034-1041.
null
刘少锋, 林朝晖, 2005.通用陆面模式CLM在东亚不同典型下垫面的验证试验[J].气候与环境研究2005(3): 406-421. DOI: 10.3878/j.issn.1006-9585.2005.03.34.
null
刘啸然, 李茂善, 胡文斌, 2019.藏北高原那曲地区不同下垫面地表粗糙度的变化特征研究[J].高原气象38(2): 428-438.DOI: 10.7522/j.issn.1000-0534.2018.00083.
null
刘新, 吴国雄, 刘屹岷, 等, 2002.青藏高原加热与亚洲环流季节变化和夏季风爆发[J].大气科学26(6): 781-793.DOI: 10. 3878/j.issn.1006-9895.2002.06.07.
null
刘光生, 王根绪, 胡宏昌, 等, 2009.青藏高原多年冻土区植被盖度变化对活动层水热过程的影响[J].冰川冻土31 (1): 89-095.DOI: 10.7522/j.issn.1000-0534.2015.00021.
null
马伟强, 马耀明, 胡泽勇, 等, 2004.藏北高原地面辐射收支的初步分析[J].高原气象23 (3): 348-352.
null
马耀明, 塚本修, 吴晓鸣, 等, 2000.藏北高原草甸下垫面近地层能量输送及微气象特征[J].大气科学24 (5): 715-722.DOI: 10.1007/s10011-000-0335-3.
null
王澄海, 师锐, 左洪超, 2007.青藏高原西部冻融期陆面过程的模拟分析[J].高原气象26 (2): 239-248.
null
王介民, 1999.陆面过程实验和地气相互作用研究——从HEIFE到IMGRASS和GAME-Tibet/TIPEX[J].高原气象18(3): 280-294.
null
王永生, 盛裴轩, 刘式达, 1987.大气物理学[J].北京: 气象出版社.
null
武利阳, 左洪超, 冯锦明, 等, 2018.中国土地利用和植被覆盖度变化对区域气候影响的数值模拟[J].兰州大学学报: 自然科学版54 (3): 334-344.
null
谢志鹏, 胡泽勇, 刘火霖, 等, 2017.陆面模式 CLM 4.5 对青藏高原高寒草甸地表能量交换模拟性能的评估[J].高原气象36 (1): 1-12.DOI: 10.7522/j.issn.1000-0534.2016.00012.
null
杨扬, 左洪超, 王丽娟, 等, 2015.干旱区荒漠草原过渡带快速变化的陆面过程特征观测分析[J].干旱气象33 (3): 412-420.DOI: 10.7522/j.issn.1000-0534.2014.00105.
null
杨耀先, 李茂善, 胡泽勇, 等, 2014.藏北高原高寒草甸地表粗糙度对地气通量的影响[J].高原气象33 (3): 626-636.DOI: 10. 7522/j.issn.1000-0534.2013.00199.
null
尤全刚, 薛娴, 彭飞, 等, 2015.高寒草甸草地退化对土壤水热性质的影响及其环境效应[J].中国沙漠35 (5): 1183-1192.DOI: 10.7522/j.issn.1000-694X.2015.00088.
null
朱晗晖, 张宇, 沈晓燕, 等, 2018.农牧交错带植被演变对区域气候影响的模拟[J].高原气象37 (3): 721-733. DOI: 10.7522/j.issn.1000-0534.2018.00050.
文章导航

/