黄河源高寒草原下垫面土壤冻融过程中陆‐气间的水热交换特征分析
收稿日期: 2020-10-26
修回日期: 2021-03-01
网络出版日期: 2022-03-17
基金资助
国家自然科学基金项目(41530529); 第二次青藏高原综合科学考察研究项目(2019QZKK0105); 成都信息工程大学科研项目(KYTZ201821)
The Characteristics of Land‐Atmospheric Water and Heat Exchange during Soil Freezing‐Thawing Process over the Underlying Surface of the Alpine Grassland in the Source Region of the Yellow River
Received date: 2020-10-26
Revised date: 2021-03-01
Online published: 2022-03-17
高寒草原水热交换的季节性特征显著, 土壤冻融过程对地‐气水热交换有着重要的影响。本文利用黄河源区汤岔玛小流域2014年5月至2015年5月陆面过程观测数据, 将土壤冻融过程划分为完全融化(TT)和完全冻结(FF)两种状态与融冻(T‐F)和冻融(F‐T)两个过程, 并分析了期间高寒草原下垫面净辐射、 感热通量、 潜热通量和地表热通量不同状态和过程中的变化, 以此探究土壤冻融过程中地气间的水热交换特征。研究表明: (1)净辐射通量在完全融化阶段的平均值要普遍大于其他三个阶段, 最大值达到了203.7 W·m-2, 冻融阶段冻土融化, 土壤含水量逐渐增加, 净辐射比完全冻结阶段明显增大, 完全融化阶段净辐射日变化值最大, 达到了717.6 W·m-2, 完全冻结阶段最小, 冻融阶段次之。(2)感热通量与潜热通量在完全融化和完全冻结阶段的配置不同。完全融化时, 由于降水和土壤含水量等原因, 净辐射主要转换为潜热通量, 潜热通量日变化最大值为193.7 W·m-2, 而感热通量只有80.0 W·m-2左右。融冻阶段、 冻融阶段与完全冻结时感热与潜热的日平均相差不大, 潜热在三个阶段平均值为21.9 W·m-2, 感热为20.3 W·m-2; 而感热日变化在三个阶段均大于潜热, 土壤发生冻融循环, 地气温差较小, 含水量产生变化, 净辐射在这期间主要转换为感热。(3)土壤热通量在完全融化(冻结)状态下为正(负), 表明地表从大气吸收(释放)热量, 其日变化幅度大(小)。以上结果说明, 土壤冻融状态与过程对近地面陆‐气间水热交换过程表现出不同的特征。
武月月 , 文军 , 王作亮 , 贾东于 , 刘闻慧 , 蒋雨芹 , 陆宣承 . 黄河源高寒草原下垫面土壤冻融过程中陆‐气间的水热交换特征分析[J]. 高原气象, 2022 , 41(1) : 132 -142 . DOI: 10.7522/j.issn.1000-0534.2021.00014
The seasonal characteristics of water and heat exchange in the alpine grasslands are significant, and the freezing‐thawing process has an important impact on the land‐atmospheric water and heat exchange.Based on the observation data of the land surface process in the Tangchama small watershed in the source area of the Yellow River from May 2014 to May 2015, this research divides the soil freezing‐thawing process into thawed stage (TT), frozen stage (FF), thawing to freezing (T-F) and freezing to thawing (F-T), and the changes in the different states and period of the net radiation, sensible heat flux, latent heat flux and surface heat flux of the underlying surface of the alpine grassland are analyzed to explore the characteristics of water and heat exchange between the land‐atmosphere in the soil freezing‐thawing process.The results are as follows: (1) The average value of the net radiation flux in the thawed stage is generally greater than that of the other three stages, and the maximum value reaches 203.7 W·m-2.The frozen soil melts in the freezing‐thawing stage, and the soil moisture content gradually increases.The radiation ratio increased significantly during the frozen stage, the net radiation diurnal variation was the largest in the thawed stage, reaching 717.6 W·m-2, and the frozen stage was the smallest, followed by the freezing‐thawing stage.(2) The proportion of sensible heat flux and latent heat flux is different in the thawed and frozen stages.When completely thawed, due to precipitation and soil moisture content, the net radiation is mainly converted into latent heat flux.The maximum diurnal variation of latent heat flux is 193.7 W·m-2, while the sensible heat flux is only about 80.0 W·m-2.The diurnal average of sensible heat and latent heat in the thawing‐freezing phase, the freezing‐thawing period and the frozen period is not much different.The mean latent heat in the three period is 21.9 W·m-2, and the sensible heat is 20.3 W·m-2; The diurnal variation is greater than the latent heat in the three period, the soil suffers a freezing‐thawing cycle, the soil temperature difference is small, and the water content changes, and the net radiation is mainly converted into sensible heat during this period; the diurnal variation of sensible heat was greater than that of latent heat in the three stages.The freezing-thawing cycle occurred in the soil, the difference between ground and air temperature was small, and the moisture content changed.During this period, the net radiation was mainly converted to sensible heat.(3) The soil heat flux is positive (negative) in thawed (frozen) state, indicating that the surface soil absorbs (releases) heat from the atmosphere, and its daily variation range is large (small).The above results show that the state and process of soil freezing and thawing have different characteristics for the water and heat exchange process between the land and atmosphere.
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | 陈渤黎, 2014.青藏高原土壤冻融过程陆面能水特征及区域气候效应研究[D].兰州: 中国科学院寒区旱区环境与工程研究所. |
null | 陈琼, 周强, 张海峰, 等, 2010.三江源地区基于植被生长季的NDVI对气候因子响应的差异性研究[J].生态环境学报, 19(6): 1284-1289.DOI: 10.3969/j.issn.1674-5906.2010.06.004. |
null | 董希成, 谢昌卫, 赵林, 等, 2013.兰州马衔山多年冻土区地表能量平衡特征分析[J].冰川冻土, 35(2): 320-326. |
null | 葛骏, 余晔, 李振朝, 等, 2016.青藏高原多年冻土区土壤冻融过程对地表能量通量的影响研究[J].高原气象, 35(3): 608-620.DOI: 10.7522/j.issn.1000-0534.2016.00032. |
null | 洪涛, 梁四海, 孙禹, 等, 2013.黄河源区多年冻土热传导系数影响因素分析及其在活动层厚度模拟中的应用[J].冰川冻土, 35(4): 824-833.DOI: 10.7522/j.issn.1000-0240.2013.0093. |
null | 李光伟, 文军, 王欣, 等, 2019.麻多高寒湿地冻结过程中土壤热通量变化特征分析[J].大气科学, 43(4): 719-729.DOI: 10. 3878/j.issn.1006-9895.1810.17181. |
null | 李述训, 南卓铜, 赵林, 2002.冻融作用对系统与环境间能量交换的影响[J].冰川冻土, 24(2): 109-115.DOI: 10.3969/j.issn. 1000-0240.2002.02.001. |
null | 李文静, 罗斯琼, 郝晓华, 等, 2021.青藏高原东部不同季节积雪过程对地表能量和土壤水热影响的观测研究[J].高原气象, 40(3): 455-471.DOI: 10.7522/j.issn.1000-0534.2020.00001. |
null | 李照国, 吕世华, 奥银焕, 等, 2012.鄂陵湖湖滨地区夏季近地层微气象特征与碳通量变化分析[J].地理科学进展, 31(5): 602-608.DOI: 10.11820/dlkxjz.2012.05.008. |
null | 陆宣承, 文军, 田辉, 等, 2020.若尔盖高寒湿地-大气间水热交换湍流通量的日变化特征分析[J].高原气象, 39(4): 719-728.DOI: 10.7522/j.issn.1000-0534.2019.00073. |
null | 罗栋梁, 金会军, 吕兰芝, 等, 2014.黄河源区多年冻土活动层和季节冻土冻融过程时空特征[J].科学通报, 59(14): 1327-1336.DOI: 10.1360/csb2014-59-14-1327. |
null | 吕钊, 李茂善, 刘啸然, 等, 2020.青藏高原东缘峨眉山地区冬季地表能量交换特征研究[J].高原气象, 39(3): 445-458.DOI: 10.7522/j.issn.1000-0534.2019.00087. |
null | 马伟强, 马耀明, 李茂善, 等, 2005.藏北高原地区地表辐射出支和能量平衡的季节变化[J].冰川冻土, 27(5): 673-679. |
null | 齐木荣, 马千惠, 杨清华, 等, 2020.青藏高原冻结期地表热储分析——以鄂陵湖畔草地为例[J].高原气象, 39(6): 1270-1281.DOI: 10.7522/j.issn.1000-0534.2019.00134. |
null | 任雪塬, 张强, 岳平, 等, 2021.中国北方四类典型下垫面能量分配特征及其环境影响因子研究[J].高原气象, 40(1): 109-122.DOI: 10.7522/j.issn.1000-0534.2020.00008 |
null | 尚伦宇, 吕世华, 张宇, 等, 2011.青藏高原东部土壤冻融过程中近地层湍流统计特征分析[J].高原气象, 30(1): 30-37. |
null | 唐恬, 王磊, 文小航, 2013.黄河源鄂陵湖地区辐射收支和地表能量平衡特征研究[J].冰川冻土, 35(6): 1462-1473.DOI: 10. 7522/j.issn.1000-0240.2013.0162. |
null | 田志伟, 王维真, 王介民, 2016.植被大气间能量储存分项对能量闭合率的影响分析[J].冰川冻土, 38(3): 794-803. |
null | 王澄海, 董文杰, 韦志刚, 2003.青藏高原季节冻融过程与东亚大气环流关系的研究[J].地球物理学报, 46(3): 309-316.DOI: 10.3321/j.issn: 0001-5733.2003.03.005. |
null | 王少影, 张宇, 吕世华, 等, 2012.玛曲高寒草甸地表辐射与能量收支的季节变化[J].高原气象, 31(3): 605-614. |
null | 王学佳, 杨梅学, 万国宁, 2012.藏北高原D105点土壤冻融状况与温湿特征分析[J].冰川冻土, 34(1): 56-63. |
null | 文军, 蓝永超, 苏中波, 等, 2011.黄河源区陆面过程观测和模拟研究进展[J].地球科学进展, 26(6): 575-585. |
null | 吴喜芳, 李改欣, 潘学鹏, 等, 2015.黄河源区植被覆盖度对气温和降水的响应研究[J].资源科学, 37(3): 512-521. |
null | 徐自为, 刘绍民, 徐同仁, 等, 2013.不同土壤热通量测算方法的比较及其对地表能量平衡闭合影响的研究[J].地球科学进展, 28(8): 875-889.DOI: 10.11867/j.issn.1001-8166.2013.08.0875. |
null | 杨成, 吴通华, 姚济敏, 等, 2020.青藏高原表层土壤热通量的时空分布特征[J].高原气象, 39(4): 706-718.DOI: 10.7522/j.issn.1000-0534.2020.00022. |
null | 杨梅学, 姚檀栋, |
/
〈 |
|
〉 |