论文

扎陵湖和鄂陵湖夏季典型地表水热交换特征的数值模拟

  • 杨显玉 ,
  • 吕雅琼 ,
  • 文军 ,
  • 马耀明 ,
  • 孟宪红 ,
  • 黄安宁 ,
  • 田辉 ,
  • 张少波 ,
  • 王禹润 ,
  • 赵林
展开
  • 1. 成都信息工程大学 大气科学学院/高原大气与环境四川省重点实验室,四川 成都 610225
    2. 中国科学院西北生态环境资源研究院,甘肃 兰州 730000
    3. 中国科学院水利部成都山地灾害与环境研究所,四川 成都 610041
    4. 中国科学院青藏高原研究所,北京 100101
    5. 青藏高原环境变化与地表过程重点实验室,北京 100101
    6. 中国科学院青藏高原地球科学卓越创新中心,北京 100101
    7. 南京大学大气科学学院,江苏 南京 210023

杨显玉(1982 -), 男, 内蒙赤峰人, 副教授, 主要从事陆面过程与气候变化方面的研究.E-mail:

收稿日期: 2020-07-24

  修回日期: 2020-11-05

  网络出版日期: 2022-03-17

基金资助

国家自然科学基金项目(41975012); 第二次青藏高原综合科学考察研究项目(2019QZKK0105); 四川省科技计划项目(2021YJ0025)

Numerical Simulation of Typical Characteristics of Land Surface Water-heat Zxchange over Gyaring Lake and Ngoring Lake in Summer

  • Xianyu YANG ,
  • Yaqiong Lü ,
  • Jun WEN ,
  • Yaoming MA ,
  • Xianhong MENG ,
  • Anning HUANG ,
  • Hui TIAN ,
  • Shaobo ZHANG ,
  • Yurun WANG ,
  • Lin ZHAO
Expand
  • 1. College of Atmospheric Sciences/ Plateau Atmosphere and Environment Key Laboratory of Sichuan Province,Chengdu University of Information Technology,Chengdu 610225,Sichuan,China
    2. Northwest Institute of Eco-Environment andResources Chinese Academy of Sciences,Lanzhou 730000,Gansu,China
    3. Institute of Mountain Hazards and Environment,Chinese Academy of Sciences,Chengdu 610041,Sichuan,China
    4. Key Laboratory of Tibetan Environment Change and Land Surface Process.Institute of Tibetan Plateau Research Chinese Academy of Sciences,Beijing 100101,China
    5. University of Chinese Academy of Sciences,Beijing 100049,China
    6. CAS Center for Excellence in Tibetan Plateau Earth Sciences,Beijing 100101,China
    7. School of Atmospheric Sciences,Nanjing University,Nanjing 210023,Jiangsu,China

Received date: 2020-07-24

  Revised date: 2020-11-05

  Online published: 2022-03-17

摘要

选用由美国国家环境预报中心NCEP和美国国家大气研究中心NCAR联合开发的新一代中尺度数值模式WRF(Weather Research and Forecasting Model)模式, 采用两重网格单向反馈嵌套的方法对扎陵湖和鄂陵湖区域的大气边界层特征进行数值模拟, 并把湖泊水体下垫面替换为草地下垫面以设计另一组去除湖泊的敏感性试验与有湖的模拟结果进行对比。结果发现, WRF模式能较好地模拟出2 m高度温度、 感热和潜热的日变化特征。扎陵湖和鄂陵湖在白天(夜晚)具有很好的降温(保温)作用, 表现出明显的冷(暖)湖效应, 进而在湖-陆间产生温度差。这样的温度差异会影响局地风场, 白天在扎陵湖和鄂陵湖的中心区域分别有强度为1.0 m·s-1和0.5 m·s-1的下沉气流。而周围地区的上空出现了强度达到2.5 m·s-1的上升气流。扎陵湖和鄂陵湖对感热和潜热的影响均有显著的日变化, 扎陵湖和鄂陵湖使得白天湖面感热和潜热值低于周围陆地, 而夜晚两湖对感热和潜热的影响与白天相反。对大气边界层高度而言, 白天由于扎陵湖和鄂陵湖有效降低了湖区上空的大气边界层高度, 而夜晚扎陵湖和鄂陵湖对大气边界层高度的影响不明显。

本文引用格式

杨显玉 , 吕雅琼 , 文军 , 马耀明 , 孟宪红 , 黄安宁 , 田辉 , 张少波 , 王禹润 , 赵林 . 扎陵湖和鄂陵湖夏季典型地表水热交换特征的数值模拟[J]. 高原气象, 2022 , 41(1) : 143 -152 . DOI: 10.7522/j.issn.1000-0534.2020.00090

Abstract

To explore the Characteristics of Land Surface Water-heat Zxchange over Gyaring Lake and Ngoring Lake in Summer, the new generation of mesoscale numerical model WRF(Weather Research and Forecasting Model), developed by National Centers for Environmental Prediction(NCEP) and National Center for Atmospheric Research (NCAR) was used to simulate the characteristics of atmospheric boundary layer in Gyaring and Ngoring Lakes area.The results show that the WRF model can preferably simulate the diurnal variation characteristics of 2 m height temperature, sensible heat and latent heat flux.Gyaring and Ngoring Lakes have great cooling (heating) effect to the air above lakes during the day (night), showing obvious cold (warm) lake effect, and producing temperature difference between lakes and land.Such a temperature difference will affect the local wind field.during the day, in the central area of Gyaring and Ngoring Lakes have the strength of 1.0 m·s-1 and 0.5 m·s-1 of downdrafts respectively, and an updraft of 2.5 m·s-1 in intensity appeared over the surrounding area.The effect of Gyaring and Ngoring Lakes on sensible heat and latent heat during the day and night varies greatly.The existence of the two lakes will make the sensible heat and latent heat value of the lake surface lower than the surrounding land during the day, while the effect of the two lakes on sensible heat and latent heat at night is opposite to that of the daytime.For the height of atmospheric boundary layer, the existence of Gyaring and Ngoring Lakes effectively reduces the height of atmospheric boundary layer over the lake area during the day, but the influence of Gyaring and Ngoring Lakes on the height of atmospheric boundary layer is not obvious at night.

参考文献

null
Beljaars A C M Holtslag A A M1991.Flux parameterization over land surfaces for atmospheric models[J].Journal of Applied Meteorology, 30: 327-341.DOI: 10.1175/1520-0450(1991)030<0327: FPOLSF>2.0.CO; 2.
null
Blaylock B K Horel J D Crosman E T2017.Impact of lake breezes on summer ozone concentrations in the Salt Lake Valley[J].Journal of Applied Meteorology and Climatology56(2): 353-370.DOI: 10.1175/JAMC-D-16-0216.1.
null
Wentworth G R Murphy J G Sills D M L2015.Impact of lake breezes on ozone and nitrogen oxides in the Greater Toronto Area[J].Atmospheric Environment, 109: 52-60.DOI: 10.1016/j.atmosenv.2015.03.002.
null
Horel J Crosman E Jacques A al et2016.Summer ozone concentrations in the vicinity of the Great Salt Lake[J].Atmospheric Science Letters17(9): 480-486.DOI: 10.1002/asl.680.
null
Yang X Y Y Q Ma Y M al et2015.Summertime thermally-induced circulations over the Lake Nam Co Region of the Tibetan Plateau[J].Journal of Meteorological Research29(2): 305-314.DOI: 10.1007/s13351-015-4024-z.
null
Zhang X Y Huang J P Li G al et2019.Improving lake-breeze simulation with WRF Nested LES and Lake Model over a Large Shallow Lake[J].Journal of Applied Meteorology and Climatology58(8): 1689-1708.DOI: 10.1175/JAMC-D-18-0282.1.
null
Wang Y W Gao Y Q Qin H R al et2017.Spatiotemporal characteristics of lake breezes over Lake Taihu, China[J].Journal of Applied Meteorology and Climatology56(7): 2053-2065.DOI: 10.1175/JAMC-D-16-0220.1.
null
曹渐华, 刘熙明, 李国平, 等, 2015.鄱阳湖地区湖陆风特征及成因分析[J].高原气象34(2): 426-435.DOI: 10.7522/j.issn. 1000-0534.2013.00197.
null
陈万隆, 孙卫国, 周竞南, 等, 1995.青海湖湖陆风的数值研究[J].湖泊科学, (4): 289-296.DOI: 10.18307/1995.0401.
null
戴永久, 魏楠, 黄安宁, 等, 2018.通用陆面模式(CoLM)湖泊过程方案与性能评估[J].科学通报63(): 3002-3021.DOI: 10.1360/N972018-00609.
null
丁永建, 杨建平, 刘时银, 等, 2003.长江黄河源区生态环境范围的探讨[J].地理学报58(4): 519-526.DOI: 10.3321/j.issn: 0375-5444.2003.04.005.
null
李茂善, 戴有学, 马耀明, 等, 2006.珠峰地区大气边界层结构及近地层能量交换分析[J].高原气象25(5): 807-813.
null
刘晓娇, 陈仁升, 刘俊峰, 等, 2020.黄河源区积雪变化特征及其对春季径流的影响[J].高原气象39(2): 226-233.DOI: 10. 7522/j.issn.1000-0534.2019.00074.
null
吕雅琼, 马耀明, 李茂善, 等, 2008.纳木错湖夏季典型大气边界层特征的数值模拟[J].高原气象27(4): 733-740.
null
马舒坡, 周立波, 邹捍, 等, 2007.冰雪对珠峰北坡绒布河谷局地环流影响的数值试验[J].高原气象26(6): 1214-1223.
null
石春娥, 李耀孙, 杨军, 等, 2015.MM5和WRF对中国东部地区冬季边界层模拟效果比较[J].高原气象34(2): 389-400.DOI: 10.7522/j.issn.1000-0534.2013.00206.
null
宋兴宇, 文莉娟, 李茂善, 等, 2020.不同湖泊模式对青藏高原典型湖泊适用性对比研究[J].高原气象39(2): 213-225.DOI: 10.7522/j.issn.1000-0534.2019.00102.
null
苏东生, 文莉娟, 赵林, 等, 2019.青海湖夏秋季局地气候效应数值模拟研究[J].高原气象38(5): 944-958.DOI: 10.7522/j.issn.1000-0534.2018.00125.
null
王婷, 李照国, 吕世华, 等, 2019.青藏高原积雪对陆面过程热量输送的影响研究[J].高原气象38(5): 920-934.DOI: 10.7522/j.issn.1000-0534.2019.00026.
null
杨显玉, 文军, 2012.扎陵湖和鄂陵湖大气边界层特征的数值模拟[J].高原气象31(4): 927-934.
null
杨薇, 苗峻峰, 谈哲敏, 2014.太湖地区湖陆风对雷暴过程影响的数值模拟[J].应用气象学报25(1): 59-70.DOI: 10.11898/1001-7313.20140107.
null
赵林, 陈玉春, 吕世华, 等, 2010.金塔绿洲解放村水库夏季晴天水文气象效应的数值模拟[J].高原气象29(6): 1414-1422.
null
张美根, 马舒坡, 许丽人, 等, 2007.珠峰北坡绒布河谷局地环流的模拟分析[J].高原气象26(6): 1146-1150.
null
张雷鸣, 1994.滇池区域性环流的数值模拟[J].热带气象学报, (2): 172-178.
文章导航

/