论文

江河源区水汽输送与收支的时空演变特征分析

  • 陈亚玲 ,
  • 文军 ,
  • 刘蓉 ,
  • 蒋雨芹 ,
  • 任国强 ,
  • 李悦绮 ,
  • 张强 ,
  • 刘正
展开
  • 1. 成都信息工程大学大气科学学院/高原大气与环境四川省重点实验室,四川 成都 610225
    2. 中国科学院西北生态环境资源研究院/中国科学院寒旱区陆面过程与气候变化重点实验室,甘肃 兰州 730000

陈亚玲(1997 -), 女, 四川成都人, 硕士研究生, 从事陆面过程与气候变化研究. E-mail:

收稿日期: 2021-02-25

  修回日期: 2021-05-31

  网络出版日期: 2022-03-17

基金资助

第二次青藏高原综合科学考察研究项目(2019QZKK0105); 四川省科技计划项目(2021YJ0025); 国家自然科学基金项目(41971308); 成都信息工程大学科研项目(KYTZ201821)

Analysis on the Temporal and Spatial Evolution Characteristics of Water Vapor Transport and Budget over the Source Region of the Three-River

  • Yaling CHEN ,
  • Jun WEN ,
  • Rong LIU ,
  • Yuqin JIANG ,
  • Guoqiang REN ,
  • Yueqi LI ,
  • Qiang ZHANG ,
  • Zheng LIU
Expand
  • 1. Key Laboratory of Plateau Atmosphere and Environment,Sichuan Province,College of Atmospheric Sciences,Chengdu University of Information Technology,Chengdu 610225,Sichuan,China
    2. Northwest Institute of Ecological Environment and Resources,Chinese Academy of Sciences,Key Laboratory of Land Surface Process and Climate Change in the Cold and Arid Region of the Chinese Academy of Sciences Room,Lanzhou 730000,Gansu,China

Received date: 2021-02-25

  Revised date: 2021-05-31

  Online published: 2022-03-17

摘要

江河源区位于青藏高原腹地, 是东亚气候变化的敏感区之一, 研究水汽的分布、 输送及收支对于理解区域降水特征具有重要意义。本研究基于1980 -2019年欧洲中期天气预报中心(ECMWF)的ERA5再分析资料, 结合1981 -2010年国家气象科学数据中心9个探空站资料, 分析了江河源及其毗邻地区水汽分布、 输送及各边界水汽收支的时空演变特征。结果表明: 江河源及其毗邻地区水汽含量的空间分布差异较大, 呈现出东南高、 西北低的特征。不同季节水汽含量分布及量值也不同, 表现为夏季最大, 秋、 春季次之, 冬季最少。源区及雅鲁藏布江流域水汽含量的年循环呈单峰变化, 主要集中在6 -8月, 最大值出现在7月(41.6 mm), 年际变化呈增加趋势, 增速为0.4 mm·(10a)-1。江河源区水汽通量主要来自阿拉伯海和孟加拉湾, 其次是中纬度西风以及西北气流的输送, 三种气流在雅鲁藏布大峡谷形成明显的水汽辐合, 不同季节水汽输送强度存在一定差异。在水汽的输入边界中, 西边界输入量最大(815.3×106 kg·s-1), 南边界(724.9×106 kg·s-1)次之, 且两个边界季节变化显著; 北边界(317.9×106 kg·s-1)输入较少, 而东边界是水汽通量的输出边界, 最大水汽输出在9月(140.5×106 kg·s-1)。江河源区净水汽输入量大于输出量, 水汽通量呈盈余状态, 这将进一步影响江河源区降水及区域水循环的变化。

本文引用格式

陈亚玲 , 文军 , 刘蓉 , 蒋雨芹 , 任国强 , 李悦绮 , 张强 , 刘正 . 江河源区水汽输送与收支的时空演变特征分析[J]. 高原气象, 2022 , 41(1) : 167 -176 . DOI: 10.7522/j.issn.1000-0534.2021.00049

Abstract

The Source Region of the Three-River (SRTR) lies in the hinterland of the Qinghai-Xizang (Tibetan) Plateau (QXP) and is one of the sensitive regions to climate change in East Asia.It is of great significance to study the distribution, transport, and budget of water vapor for understanding the characteristics of the regional precipitation.This research is based on the ERA5 reanalysis data of the European Centre for Medium-Range Weather Forecasts (ECMWF) from 1980 to 2019, combined with the data of 9 radiosonde stations in the National Meteorological Data Center from 1981 to 2010.The temporal and spatial variation characteristics of water vapor distribution, water vapor transport flux and budget of each boundary over the SRTR and its surrounding areas are analyzed.The results show that there are significant differences in the spatial distribution of water vapor content, which presents a high value region in the southeastern QXP and a low value region in the northwest of the QXP.The distribution and value of water vapor content are different in four seasons, which exhibit the largest in summer, followed by autumn and spring, and the least in winter.The annual cycle of water vapor content manifests the single peak over the SRTR and the Brahmaputra River basin.Water vapor is mainly concentrated in June to August and its maximum appears in July with a value of 41.6 mm.The inter-annual variation shows an increasing trend with a rate of 0.4 mm·(10a)-1.The Arabian Sea and the Bay of Bengal are the main sources of water vapor over the SRTR, followed by the western airflow from the middle latitude and the northwestern airflow.Three kinds of airflows form obvious convergence of water vapor transport flux over the Brahmaputra Grand Canyon.There are seasonal discrepancies in the intensity of water vapor transport.Among the water vapor import boundaries, the western boundary has the largest import (815.3×106 kg·s-1), followed by the southern boundary (724.9×106 kg·s-1) and the seasonal variations of the two boundaries are significant.The northern boundary has less import (317.9×106 kg·s-1), while the eastern boundary is the export boundary of water vapor flux, and the maximum water vapor export is in September with a value of 140.5×106 kg·s-1.The net water vapor import is greater than the export, thus the water vapor flux is in surplus, which is about to affect the variations of precipitation and the regional water cycle over the SRTR.

参考文献

null
Dong W H Lin Y L Wright J S al et2016.Summer rainfall over the southwestern Tibetan Plateau controlled by deep convection over the Indian subcontinent[J].Nature Communications, 7: 10925.DOI: 10.1038/ncomms10925.
null
Hu Y K Xu J F Huang Y X al et2019.Spatial and temporal variations in the rainy season onset over the Qinghai-Tibet Plateau[J].Water, 11: W11101960.DOI: 10.3390/w11101960.
null
Jiang J Zhou T J Zhang W X2019.Evaluation of satellite and reanalysis precipitable water vapor data sets against radiosonde observations in Central Asia[J].Earth and Space Science6(7): 1129-1148.DOI: 10.1029/2019EA000654.
null
Lu N Trenberth K E Qin J al et2015.Detecting long-term trends in precipitable water over the Tibetan Plateau by synthesis of station and MODIS observations[J].Journal of Climate28(4): 1707-1722.DOI: 10.1175/JCLI-D-14-00303.1.
null
Sun B Wang H J2018.Interannual variation of the spring and summer precipitation over the Three River Source Region in China and the associated regimes[J].Journal of Climate31(18): 7441-7457.DOI: 10.1175/JCLI-D-17-0680.1.
null
Wu Y P Shen Y P Li B L2012.Possible physical mechanism of water vapor transport over Tarim River Basin[J].Ecological Complexity, 9: 63-70.DOI: 10.1016/j.ecocom.2011.12.002.
null
Xu G R Cui C G Li W J al et2011.Variation of GPS precipitable water over the Qinghai-Tibet Plateau: possible teleconnection triggering rainfall over the Yangtze River Valley[J].Terrestrial Atmospheric and Oceanic Sciences22(2): 195-202.
null
Xu X D Zhou M Y Chen J Y al et2002.A comprehensive physical pattern of land-air dynamic and thermal structure on the Qinghai-Xizang Plateau[J].Science China Earth Sciences45(7): 577-594.DOI: 10.1360/02yd9060.
null
Zhou H K Zhao X Q Tang Y H al et2005.Alpine grassland degradation and its control in the source region of the Yangtze and Yellow Rivers, China[J].Grassland Science51(3): 191-203.DOI: 10.1111/j.1744-697X.2005.00028.x.
null
陈斌, 徐祥德, 施晓晖, 2011.拉格朗日方法诊断2007年7月中国东部系列极端降水的水汽输送路径及其可能蒸发源区[J].气象学报69(5): 810-818.DIO: 10.11676/qxxb2011.071.
null
董锁成, 周长进, 王海英, 2002.“三江源”地区主要生态环境问题与对策[J].自然资源学报17(6): 713-720.DOI: 10.11849/zrzyxb.2002.06.009.
null
甘海洪, 2020.三江源区区域蒸散发的分布特征[D].北京: 中国地质大学, 1-65.
null
韩军彩, 周顺武, 吴萍, 等, 2012.青藏高原上空夏季水汽含量的时空分布特征[J].干旱区研究29(3): 457-463.DOI: 10. 13866/j.azr.2012.03.023.
null
韩永荣, 2002.江河源区生态环境面临的问题和防治对策[J].环境保护, (6): 31-33.DOI: 10.3969/j.issn.0253-9705.2002. 06.009.
null
李璠, 肖建设, 颜亮东, 2016.1964 -2014年青海省三江源地区日降水格局分析[J].干旱地区农业研究34(5): 282-288.DOI: 10.7606/j.issn.1000-7601.2016.05.43.
null
李生辰, 李栋梁, 赵平, 等, 2009.青藏高原“三江源地区”雨季水汽输送特征[J].气象学报67(4): 591-598.DOI: 10.11676/qxxb2009.059.
null
刘纪远, 徐新良, 邵全琴, 2008.近30年来青海三江源地区草地退化的时空特征[J].地理学报63(4): 364-376.DOI: 10.3969/j.issn.1009-637X.2008.03.001.
null
孟庆博, 刘艳丽, 鞠琴, 等, 2020.雅鲁藏布江流域近18年来植被变化及其对气候变化的响应[J/OL].南水北调与水利科技(中英文).[2021-02-23].
null
孟宪红, 陈昊, 李照国, 等, 2020.三江源区气候变化及其环境影响研究综述[J].高原气象39(6): 1133-1143.DOI: 10.7522/j.issn.1000-0534.2019.00144.
null
王美月, 王磊, 李谢辉, 等, 2022.三江源地区暴雨的水汽输送源地及路径研究[J/OL].高原气象.[2021-02-23].
null
谢欣汝, 游庆龙, 保云涛, 等, 2018.基于多源数据的青藏高原夏季降水与水汽输送的联系[J].高原气象37(1): 78-92.DOI: 10.7522/j.issn.1000-0534.2017.00030.
null
徐可飘, 2020.青藏高原大气水汽含量及水汽输送特征研究[D].安徽: 中国科学技术大学, 1-72.
null
徐祥德, 董李丽, 赵阳, 等, 2019.青藏高原“亚洲水塔”效应和大气水分循环特征[J].科学通报64(27): 2830-2841.
null
薛鹏飞, 余钟波, 谷黄河, 2020.雅鲁藏布江流域GPM和TRMM遥感降水产品精度评估[J].水电能源科学38(11): 13-16.
null
杨浩, 崔春光, 王晓芳, 等, 2019.气候变暖背景下雅鲁藏布江流域降水变化研究进展[J].暴雨灾害38(6): 565-575.
null
张强, 张杰, 孙国武, 等, 2007.祁连山山区空中水汽分布特征研究[J].气象学报65(4): 633-643.DOI: 10.11676/qxxb2007.058.
null
张文霞, 张丽霞, 周天军, 等, 2016.雅鲁藏布江流域夏季降水的年际变化及其原因[J].大气科学40(5): 965-980.DOI: 10. 3878/j.issn.1006-9895.1512.15205.
null
曾钰婷, 张宇, 周可, 等, 2020.青藏高原那曲地区夏季水汽来源及输送特征分析[J].高原气象39(3): 467-476.DOI: 10.7522/ j.issn.1000-0534.2019.00120.
null
周天军, 高晶, 赵寅, 等, 2019.影响“亚洲水塔”的水汽输送过程[J].中国科学院院刊34(11): 1210-1219.
null
朱丽, 刘蓉, 王欣, 等, 2019.基于FLEXPART模式对黄河源区盛夏降水异常的水汽源地及输送特征研究[J].高原气象38(3): 484-496.DOI: 10.7522/j.issn.1000-0534.2019.00015.
文章导航

/