论文

青藏高原东部拉萨河下游地区大气湍流交换特征研究

  • 杨斌 ,
  • 袁祺 ,
  • 谭昌海 ,
  • 张功 ,
  • 郑宁 ,
  • 谷良雷
展开
  • 1. 中国地质调查局自然资源综合调查指挥中心,北京 100055
    2. 中国林业科学研究院林业研究所,北京 100091
    3. 中山大学大气科学学院,广东 珠海 519082
    4. 中国科学院西北生态环境资源研究院寒旱区陆面过程与气候变化重点实验室,甘肃 兰州 730000
    5. 中国科学院西北生态环境资源研究院那曲高寒气候环境观测研究站,甘肃 兰州 730000

杨斌(1984 -), 男, 云南玉溪人, 工程师, 研究方向为自然资源调查、 观测和地质学. E-mail:

收稿日期: 2021-02-01

  修回日期: 2021-10-09

  网络出版日期: 2022-03-17

基金资助

中国地质调查局青藏高原自然资源要素综合观测试点项目(DD20208064); 第二次青藏高原综合科学考察研究项目(2019QZKK0103); 中国科学院战略性先导科技专项(XDA20020102); 国家重点研发计划项目(2018YFC1505701)

Study on the Characteristics of Atmospheric Turbulence Exchange in the Lower Reaches of the Lhasa River in the Eastern Qinghai-Xizang Plateau

  • Bin YANG ,
  • Qi YUAN ,
  • Changhai TAN ,
  • Gong ZHANG ,
  • Ning ZHENG ,
  • Lianglei GU
Expand
  • 1. Comprehensive Survey Command Center for Natural Resources,China Geological Survey,Beijing 100055,China
    2. Research Institute of Forestry,Chinese Academy of Forestry,Beijing 100091,China
    3. School of Atmospheric Sciences,SUN YAT-SEN University,Zhuhai 519082,Guangdong,China
    4. Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions,Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences,Lanzhou 730000,Gansu,China
    5. Nagqu Station of Plateau Climate and Environment,Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences,Lanzhou 730000,Gansu,China

Received date: 2021-02-01

  Revised date: 2021-10-09

  Online published: 2022-03-17

摘要

地气之间物质和能量随湍流运动进行输送, 涡度相关技术是研究地气交换过程和评估大气资源的重要手段, 它对湍流特征和精确的通量观测研究具有重要的作用。本研究利用拉萨蔡公堂通量站的闭路涡度相关系统, 观测了2020年8 -11月青藏高原东部拉萨河下游地区典型高寒草甸下垫面的通量特征, 并分析了该区域生长季和非生长季不同大气稳定条件下湍流谱特征和相似性规律。结果表明: (1)生长季时期(8 -9月), 净生态系统CO2交换(NEE)日均值为-2.3 gC·m-2·d-1, 蒸散(ET)日均值为1.8 mm·d-1, 非生长季时期(10 -11月), NEE日均值为1.1 gC·m-2·d-1, ET日均值为0.3 mm·d-1; (2)三维(uvw)方向的湍流风速和温度的归一化谱具有明显的惯性副区, 谱密度曲线斜率符合-2/3规律, 垂直方向(w)湍流风速分别和温度、 CO2和H2O等气体浓度的归一化协谱曲线斜率较高于-4/3; (3)生长季和非生长季时期大气稳定度的日变化相似, 主要随动量通量的增加而降低, 但各方向风速的归一化标准差( σ / u *)拟合结果不同, 生长季时期, σ u / u * σ v / u * σ w / u *分别为2.84、 2.73和1.07, 非生长季时期三者增加, 分别为3.23、 3.19和1.22, 其非生长季时期水平方向风速归一化标准差增加较明显。利用闭路涡度相关系统可以较好地观测本研究区通量特征, 并且分别考虑生长季和非生长季时期湍流风速的相似性规律参数化方案有助于更精确地观测大气资源。

本文引用格式

杨斌 , 袁祺 , 谭昌海 , 张功 , 郑宁 , 谷良雷 . 青藏高原东部拉萨河下游地区大气湍流交换特征研究[J]. 高原气象, 2022 , 41(1) : 204 -215 . DOI: 10.7522/j.issn.1000-0534.2021.00086

Abstract

Matter and energy between the land and atmosphere are transported with turbulent movement.Eddy covariance technology is an important way to evaluate atmospheric resources.It plays an important role in turbulence characteristics and accurate flux observation research.In this study, we analyzed the characteristics and similarity of turbulence spectra under different atmosphere conditions in the growing and non-growing seasons using closed-path eddy covariance system of Caigongtang flux station for the underlying surface of the typical grassland in the lower reaches of the Lhasa River in the eastern Qinghai-Xizang Plateau from August to November, 2020.The results showed: (1) During the growing season from August to September, the average daily net ecosystem CO2 exchange (NEE) was -2.3 gC·m-2·d-1, and the average daily ET was 1.8 mm·day-1, During the non-growing season from October to November, the average daily NEE was 1.1 gC·m-2·d-1, and the average daily ET was 0.3 mm·day-1; (2) The normalized spectra of three-dimensional (uv and w) direction of turbulent wind speed and temperature had obvious sub-regions of inertia, the slope of the spectra density curve conformed to the -2/3 law, and the normalized co-spectra of the vertical direction (w) turbulent wind speed and temperature, CO2 and H2O gas concentrations is higher than -4/3 law; (3) The daily variation of atmosphere stability during the growing and non-growing seasons was similar, mainly decreasing with the increase of momentum flux, but the normalized standard deviation ( σ / u *) fitting results of wind speed in each direction were different.During the growing season, σ u / u * σ v / u *, and σ w / u *were 2.84, 2.73, and 1.07, respectively.During the non-growing season, the three increased to 3.23, 3.19, and 1.22, respectively.The increase in normalized standard deviation of horizontal wind speed was obvious during the non-growing season, so the parameterization scheme of the similarity law of turbulent wind speed during the growing and non-growing seasons should be considered separately.The closed-path eddy covariance system can better realize the flux observation in this study area, and this conclusion can provide the basis for the land surface parameterization scheme that considers the similarity of the turbulent wind speed during the growing and non-growing seasons, which helps to observe the atmospheric resources more accurately.

参考文献

null
Baldocchi D D2020.How eddy covariance flux measurements have contributed to our understanding of global change biology[J].Global change biology26(1): 242-260.
null
Cleveland W S Devlin S J1988.Locally weighted regression: An approach to regression analysis by local fitting[J].Journal of the American Statistical Association83(403): 596-610.
null
Elie B Z William A Gabriel G K al et2020.The persistent challenge of surface heterogeneity in boundary-layer meteorology: A review[J].Boundary-Layer Meteorology177(1): 227-245.
null
Finnigan J Ayotte K Harman I al et2020.Boundary-layer flow over complex topography[J].Boundary-Layer Meteorology177(5): 247-313.
null
Hicks B B Baldocchi D D2020.Measurement of fluxes over land: Capabilities, origins, and remaining challenges[J].Boundary-Layer Meteorology177(1): 365-394.
null
Kaimal J C Wyngaard J C Izumi Y al et1972.Spectral characteristics of surface‐layer turbulence[J].Quarterly Journal of the Royal Meteorological Society98(417): 563-589.
null
Kolmogorov A N1991.The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers[J].Proceedings of the Royal Society of London Series A: Mathematical and Physical Sciences434(1890): 9-13.
null
Ma N Zhang Y S Guo Y H al et2015.Environmental and biophysical controls on the evapotranspiration over the highest alpine steppe[J].Journal of Hydrology529(1): 980-992.
null
Mahrt L1998.Nocturnal boundary-layer regimes[J].Boundary-Layer Meteorology88(2): 255-278.
null
Monin A S Obukhov A M1954.Basic laws of turbulent mixing in the surface layer of the atmosphere[J].Geophysical Institute of the Academy of Sciences of the USSR151(163): 187-195.
null
Polonik P Chan W S Billesbach D P al et2019.Comparison of gas analyzers for eddy covariance: Effects of analyzer type and spectral corrections on fluxes[J].Agricultural and Forest Meteorology272(1): 128-142.
null
Rannik ü Peltola O Mammarella I2016.Random uncertainties of flux measurements by the eddy covariance technique[J].Atmospheric Measurement Techniques9(10): 5163-5181.
null
Raupach M R Finnigan J J Brunet Y1996.Coherent eddies and turbulence in vegetation canopies: The mixing-layer analogy[J].Boundary-Layer Meteorology78(1): 351-382.
null
Taylor G I1938.The spectrum of turbulence[J].The Royal Society of London164(1): 476-490.
null
Wang T J Gao T C Zhang H S al et2019.Review of Chinese atmospheric science research over the past 70 years: Atmospheric physics and atmospheric environment[J].Science China (Earth Sciences)62(12): 1903-1945.
null
Yue P Zhang Q Wang R Y al et2015.Turbulence intensity and turbulent kinetic energy parameters over a heterogeneous terrain of Loess Plateau[J].Advances in Atmospheric Sciences32(9): 1291-1302.
null
Zhao L Li Y N Xu S X al et2006.Diurnal, seasonal and annual variation in net ecosystem CO2 exchange of an alpine shrubland on Qinghai‐Tibetan plateau[J].Global Change Biology12(10): 1940-1953.
null
卞林根, 陆龙骅, 程彦杰, 等, 2001.青藏高原东南部昌都地区近地层湍流输送的观测研究[J].应用气象学报12(1): 1-13.
null
陈云刚, 张宇, 王少影, 等, 2014.高寒草甸湍流特征量的季节变化特征[J].高原气象33(3): 585-595.DOI: 10.7522/j.issn. 1000-0534.2014.00044.
null
李春花, 刘峰贵, 陈蓉, 等, 2014.拉萨市旅游气候舒适度定量研究[J].干旱区资源与环境28(8): 203-208.
null
李家伦, 洪钟祥, 2000.青藏高原西部改则地区大气边界层特征[J].大气科学24(3): 301-312.
null
李英, 李跃清, 赵兴炳, 2008.青藏高原东部与成都平原大气边界层对比分析Ⅱ: 近地层湍流特征[J].高原山地气象研究28(3): 8-14.
null
刘辉志, 冯健武, 邹捍, 等, 2007.青藏高原珠峰绒布河谷地区近地层湍流输送特征[J].高原气象26(6): 1151-1161.
null
刘辉志, 洪钟祥, 2000.青藏高原改则地区近地层湍流特征[J].大气科学24(3): 289-300.
null
刘树华, 李洁, 刘和平, 等, 2005.在EBEX-2000 实验资料中湍流谱和局地各向同性特征[J].大气科学29(2): 213-224.
null
马耀明, 马伟强, 胡泽勇, 等, 2002.青藏高原草甸下垫面湍流强度相似性关系分析[J].高原气象21(5): 514-517.
null
倪攀, 金昌杰, 王安志, 等, 2009.科尔沁草地不同大气稳定度下湍流特征谱分析[J].生态学杂志28(12): 2495-2502.
null
祁永强, 王介民, 1996.青藏高原五道梁地区湍流输送特征的研究[J].高原气象15(2): 172-177.
null
沈鹏珂, 张雪芹, 2019.藏南羊卓雍错湖面大气湍流特征观测分析[J].湖泊科学31(1): 243-255.
null
苗曼倩, 曹鸿, 季劲钧, 1998.青藏高原大气边界层湍流特征量分析 [J].高原气象17(4): 356-363.
null
王寅钧, 徐祥德, 赵天良, 等, 2015.青藏高原东南缘边界层对流与湍能结构特征[J].中国科学(地球科学)45(6): 843-855.
null
段丽君, 段安民, 胡文婷, 等, 2017.2014年夏季青藏高原狮泉河与林芝降水低频振荡及陆—气过程日变化特征 [J].大气科学41 (4): 767-783.
null
吴灏, 叶柏生, 吴锦奎, 等, 2013.疏勒河上游高寒草甸下垫面湍流特征分析[J].高原气象32(2): 368-376.DOI: 10.7522/j.issn. 1000-0534.2013.00036.
null
徐玲玲, 张宪洲, 石培礼, 等, 2005.青藏高原高寒草甸生态系统净二氧化碳交换量特征[J].生态学报25(8): 1948-1952.
null
徐自为, 刘绍民, 宫丽娟, 等, 2008.涡动相关仪观测数据的处理与质量评价研究[J].地球科学进展23(4): 357-370.
null
杨丽薇, 高晓清, 惠小英, 等, 2017.青藏高原中部聂荣亚寒带半干旱草地近地层湍流特征研究[J].高原气象36(4): 875-885.DOI: 10.7522/j.issn.1000-0534.2016.00089.
null
仲雷, 马耀明, 苏中波, 等, 2006.珠峰北坡地区近地层大气湍流与地气能量交换特征[J].地球科学进展21(12): 1293-1303.
null
周明煜, 徐祥德, 卞林根, 2000.青藏高原大气边界层观测分析与动力学研究[M].北京: 气象出版社.
null
朱志鹍, 马耀明, 李茂善, 等, 2007.珠穆朗玛峰北坡高寒草甸生态系统CO2通量日变化与月变化特征[J].高原气象26(6): 1300-1304.
文章导航

/