四川盆地西部一次典型连续夜雨的数值模拟
收稿日期: 2019-06-06
修回日期: 2019-12-10
网络出版日期: 2022-03-17
基金资助
风云三号(02批)气象卫星地面应用系统工程项目(ZQC-J19193); 第二次青藏高原综合科学考察研究项目(2019QZKK0105)
Numerical Simulation of a Typical Continuous Night Rain Processin the Western Sichuan Basin
Received date: 2019-06-06
Revised date: 2019-12-10
Online published: 2022-03-17
利用中尺度模式WRF研究了2017年7月15 -17日发生在四川盆地西部的一次典型连续性夜雨过程的形成机制, 重点讨论了“山谷风”局地环流对此次夜雨过程的作用。研究表明: (1)此次降水天气过程主要发生在500 hPa“北高南低”的环流形势背景下, 这种背景有利于北方冷空气向南输送; 850 hPa上台风东侧的偏南气流和副热带高压西侧偏南气流叠加形成输送带, 有利于低纬大量水汽和热量向四川盆地输送。(2)WRF模式模拟出的“山谷风”是此次夜雨过程的重要动力机制: 白天青藏高原东坡受“谷风”控制, 夜晚青藏高原东坡受“山风”控制, 从而产生了此次夜雨现象。(3)三种螺旋度都能够较好地解释夜间降水形成和“山谷风”之间的关系。
陈得圆 , 王磊 , 李谢辉 , 裴坤宁 . 四川盆地西部一次典型连续夜雨的数值模拟[J]. 高原气象, 2022 , 41(1) : 216 -225 . DOI: 10.7522/j.issn.1000-0534.2019.00109
Used the mesoscale WRF model to study a continuous night rain processthat occurred in the western Sichuan Basin from 15 to 17 July 2017, and explored the formation mechanism of the night rain process, especially the local “valley wind” circulation.The main conclusions are as follows: (1)This weather process mainly occurs in the background of the 500 hPa “North High South Low” circulation, which is conductive to the southward transport of cold air.The southerly airflow on the east side of the typhoon at 850 hPa and the southerly airflow on the west side of the subtropical high are superimposed to from a conveyor belt, which is conducive to the transportation of large amounts of water vapor and heat to the Sichuan Basin at low latitudes.(2)The “valley wind” simulated by the WRF model is an important driving mechanism of the night rain process: during days, the eastern slope of the Qinghai-Xizang Plateau is controlled by the “valley wind” while the eastern slope of the Qinghai-Xizang Plateau is controlled by the “mountain wind” at night.(3)The three helicities can better explain the relationship of the night precipitation formation and the "valley wind”.
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | 白爱娟, 刘晓东, 刘长海, 2011.青藏高原与四川盆地夏季降水日变化的对比分析[J].高原气象, 30(4): 852-859. |
null | 段春锋, 曹雯, 缪启龙, 等, 2013.中国夏季夜雨的空间分布特征[J].自然资源学报, 28(11): 1935-1944. |
null | 谷星月, 马耀明, 马伟强, 等, 2018.青藏高原地表辐射通量的气候特征分析[J].高原气象, 37(6): 1458-1469.DOI: 10.7522/j.issn.1000-0534.2018.00051. |
null | 李川, 陈静, 何光碧, 2006.青藏高原东侧陡峭地形对一次强降水天气过程的影响[J].高原气象, 25(3): 442-450. |
null | 李琴, 杨帅, 崔晓鹏, 等, 2016.四川暴雨过程动力因子指示意义与预报意义研究[J].大气科学, 40(2): 341-356. |
null | 卢萍, 宇如聪, 周天军, 2008.2003年8月“巴蜀夜雨”过程的模拟和分析研究[J].气象学报, 66(3): 371-380. |
null | 卢萍, 宇如聪, 周天军, 2009.四川盆地西部暴雨对初始水汽条件敏感性的模拟研究[J].大气科学, 33(2): 241-250. |
null | 吕炯, 1942.巴山夜雨[J].气象学报, 1(1): 36-53. |
null | 钱永甫, 周天军, 1995.有地形模式中气压梯度力误差扣除法[J].高原气象, 24(1): 1-9. |
null | 冉令坤, 楚艳丽, 2009.强降水过程中垂直螺旋度和散度通量及其拓展形式的诊断分析[J].物理学报, 58(11): 8094-8106. |
null | 沈沛丰, 张耀存, 2011.四川盆地夏季降水日变化的数值模拟[J].高原气象, 30(4): 860-868. |
null | 吴迪, 王澄海, 何光碧, 2016.青藏高原地区夏季两次强降水过程中重力波特征分析[J].高原气象, 35(4): 854-864.DOI: 10. 7522/j.issn.1000-0534.2015.00066. |
null | 徐裕华, 王宗德, 王明, 等, 1991.西南气候[M].北京: 气象出版社, 298. |
null | 杨帅, 陈斌, 高守亭, 2013.水汽螺旋度和热力螺旋度在华北强“桑拿天”过程中的分析及应用[J].地球物理学报, 56(7): 2185-2194. |
null | 于涵, 张杰, 刘诗梦, 2019.青藏高原地表非绝热加热模态及其与中国北方环流异常的联系[J].高原气象, 38(2): 237-252.DOI: 10.7522/j.issn.1000-0534.2018.00079. |
null | 郁淑华, 何光碧, 1997.青藏高原切变线对四川盆地西部突发性暴雨影响的数值试验[J].高原气象, 26(3): 306-311. |
null | 岳彩军, 曹钰, 李小凡, 2014.垂直螺旋度的拓展研究及应用[J].高原气象, 33(5): 1281-1288.DOI: 10.7522/j.issn.1000-0534. 2013.00115. |
null | 赵玉春, 王叶红, 2010.高原涡诱生西南涡特大暴雨成因的个例研究[J].高原气象, 29(4): 819-831. |
/
〈 |
|
〉 |