论文

黄土高原夏季极端降水及其成因分析

  • 卢珊 ,
  • 胡泽勇 ,
  • 付春伟 ,
  • 樊威伟 ,
  • 吴笛
展开
  • 1. 中国科学院西北生态环境资源研究院 寒旱区陆面过程与气候变化重点实验室,甘肃 兰州 730000
    2. 陕西省气象服务中心,陕西 西安 710014
    3. 中国科学院西北生态环境资源研究院 那曲高寒气候环境观测研究站,西藏 那曲 852000
    4. 中国科学院大学,北京 100049

卢珊(1985 -), 女, 陕西石泉人, 博士研究生, 主要从事气候变化与极端天气研究. E-mail:

收稿日期: 2020-12-01

  修回日期: 2021-03-31

  网络出版日期: 2022-03-17

基金资助

第二次青藏高原科学考察和研究计划项目(2019QZKK0103); 中国科学院战略性先导科技专项(XDA2006010101); 国家自然科学基金项目(91837208); 国家重点研发计划项目(2018YFC1505701)

Characteristics and Possible Causes for Extreme Precipitation in Summer over the Loess Plateau

  • Shan LU ,
  • Zeyong HU ,
  • Chunwei FU ,
  • Weiwei FAN ,
  • Di WU
Expand
  • 1. Key laboratory of Land Surface Process and Climate Change in Cold and Arid Regions,Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences,Lanzhou 730000,Gansu,China
    2. Shaanxi Meteorological Service Center,Xi’an 710014,Shaanxi,China
    3. Nagqu Station of Plateau Climate and Environment,Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences,Nagqu 852000,Xizang,China
    4. University of Chinese Academy of Sciences,Beijing 100049,China

Received date: 2020-12-01

  Revised date: 2021-03-31

  Online published: 2022-03-17

摘要

利用1961 -2016年夏季黄土高原地区64个气象监测站的逐日降水资料及同期NCEP/NCAR再分析数据, 分析了近56年黄土高原夏季极端降水的时空变化特征, 并对比了极端降水强弱年以及不同年代黄土高原地区夏季大气环流形势的异同。结果表明, 黄土高原夏季极端降水占夏季总降水量的54%左右, 总体上呈现出东多西少的空间分布特征。在近年来黄土高原夏季降水整体下降的背景下, 极端降水占比在将近70%的站点表现出增长趋势。对比极端降水强弱年环流形势发现, 当贝加尔湖低压增强, 西北太平洋副热带高压偏强偏北时, 有利于西北太平洋及南海暖湿气流向北输送, 与北方干冷空气在黄土高原上空交绥, 从而导致更多的极端降水。在强极端降水年的夏季, 存在着异常强的水汽净收入。6月, 北边界和南边界的水汽输入加强。北边界在7月和8月转为水汽输出边界, 同时西边界和南边界的输入加强, 且8月的增加更为明显。在强极端降水年, 夏季黄土高原上还可以观察到更加明显的冷暖空气交绥, 这有利于研究区域不稳定能量的释放和极端降水的增加。此外, 研究发现黄土高原夏季极端降水在1980年代经历了从偏多到偏少的转变, 近些年来又逐渐增加。对比不同年代夏季大气环流可见, 当水汽净收入为正, 同时冷暖空气交汇明显时, 对应年代的黄土高原夏季极端降水偏多, 反之则降水偏少。

本文引用格式

卢珊 , 胡泽勇 , 付春伟 , 樊威伟 , 吴笛 . 黄土高原夏季极端降水及其成因分析[J]. 高原气象, 2022 , 41(1) : 241 -254 . DOI: 10.7522/j.issn.1000-0534.2021.00027

Abstract

Using the daily precipitation datasets from 64 meteorological monitoring stations in the Loess Plateau and NCEP/NCAR reanalysis data during the period of 1961 -2016, the spatial-temporal variations of the extreme precipitation were investigated in the Loess Plateau.In addition, the similarities and differences in atmospheric circulation situation corresponding to strong and weak years of extreme precipitation, and in different ages were compared.Results showed that extreme precipitation was the major type in summer in the Loess Plateau, which accounted for about 70% of the total summer precipitation, and presented spatial decreases from east to west of the plateau.Under the background of overall decline of summer precipitation in the Loess Plateau from 1961 to 2016, the proportion of extreme precipitation showed an increasing trend among almost 70% of the stations.Comparison of atmospheric circulation between strong and weak year indicated that when Baikal low strengthened and the subtropical high extended northward in summer, the warm and humid northward air flow from the Northwest Pacific Ocean and South China Sea intensified, leading to the convergence of cold and warm air over the Loess Plateau and consequently more extreme precipitation in summer.In strong extreme precipitation years, there were positive water vapor income anomalies in summer in the Loess Plateau.The positive contribution to water vapor mainly originated from the northern and southern boundaries in June.The water vapor at northern boundary was converted to an output part in July and August, while the water vapor input at the western and southern boundaries increased and more pronounced in August.The more obviously convergence of cold and warm air in summer was detected in strong extreme precipitation years, which was beneficial to the release of unstable energy and the increase of extreme precipitation in study area.Moreover, extreme precipitation in summer was found to have experienced a transition from wet condition to dry condition in the Loess Plateau in the 1980s, and had begun to increase in recent years.Based on the analyses of the characteristics of summer atmospheric circulation in different ages, it can be observed that positive net income of water vapor and obvious convergence of cold and warm air in summer typically resulted in more extreme precipitation in the Loess Plateau in the corresponding year, and vice versa.

参考文献

null
Chen F H Jia J Chen J H al et2016.A persistent Holocene wetting trend in arid central Asia, with wettest conditions in the late Holocene, revealed by multi-proxy analyses of loess-paleosol sequences in Xinjiang, China[J].Quaternary Science Reviews, 146: 134-146.
null
Chen G S Huang R H2012.Excitation mechanisms of the teleconnection patterns affecting the July precipitation in northwest China[J].Journal of Climate25(22): 7834-7851.
null
Chen G S Huang R H Zhou L T2013.Baroclinic instability of the silk road pattern induced by thermal damping[J].Journals of the Atmospheric Sciences70(9): 2875-2893.
null
Chen Y Zhai P M2014.Two types of typical circulation pattern for persistent extreme precipitation in Central-Eastern China[J].Quarterly Journal of the Royal Meteorological Society140(682): 1467-1478.
null
Jones P D Horton E B Folland C K al et1999.The use of Indices to identify changes in climatic extremes[J].Climatic Change42 (1): 131-149.
null
Feng L Zhou T J2012.Water vapor transport for summer precipitation over the Tibetan Plateau: Multidata set analysis[J].Journal of Geophysical Research Atmospheres, 117: 0148-0227.
null
Orsolini Y J Zhang L Peters D H W al et2016.Extreme precipitation events over north China in August 2010 and their link to eastward propagating wave-trains across Eurasia: Observations and monthly forecasting[J].Quarterly Journal of the Royal Meteorological Society141(693): 3097-3105.
null
Wan L Zhang X P Ma Q al et2013.Spatiotemporal characteristics of precipitation and extreme events on the Loess Plateau of China between 1957 and 2009[J].Hydrological Processes28(18): 4971-4983.
null
Xu K P Zhong L Ma Y M al et2020.A study on the water vapor transport trend and water vapor source of the Tibetan Plateau[J].Theoretical and Applied Climatology140(35): 1031-1042.
null
Yan Z W Jones P D Davies T D al et2002.Trends of Extreme Temperatures in Europe and China Based on Daily Observations[J].Climatic Change53 (1): 355-392.
null
蔡英, 宋敏红, 钱正安, 等, 2015.西北干旱区夏季强干、 湿事件降水环流及水汽输送的再分析[J].高原气象34(3): 597-610.DOI: 10.7522/j.issn.1000-0534.2015.00049.
null
陈冬冬, 戴永久, 2009.近五十年我国西北地区降水强度变化特征[J].大气科学33(5): 923-935.
null
陈亚宁, 王怀军, 王志成, 等, 2017.西北干旱区极端气候水文事件特征分析[J].干旱区地理40(1): 1-9.
null
李双双, 孔锋, 韩鹭, 等, 2020.陕北黄土高原区极端降水时空变化特征及其影响因素[J].地理研究39(1): 140-151.
null
李栋梁, 魏丽, 蔡英, 等, 2003.中国西北现代气候变化事实与未来趋势展望[J].冰川冻土25(2): 135-142.
null
林婧婧, 张强, 2016.中国西北地区气候态变化对极端天气监测的影响[J].中国沙漠36(6): 1659-1665.
null
林纾, 王毅荣, 2007.中国黄土高原地区降水时空演变[J].中国沙漠27(3): 502-508.
null
卢珊, 胡泽勇, 王百朋, 等, 2020.近56年中国极端降水事件的时空变化格局[J].高原气象39(4): 683-693.DOI: 10. 7522/j.issn.1000-0534.2019.00058.
null
栾晨, 宋敏红, 蔡英, 等, 2012.西北区西部夏半年强降水分布与变化特征[J].高原气象31(3): 629-637.
null
汪宝龙, 张明军, 魏军林, 等, 2012.西北地区近50a气温和降水极端事件的变化特征[J].自然资源学报27(10): 1720-1733.
null
王雅琦, 冯娟, 李建平, 等, 2020.西北地区东部夏季降水年际变化特征及其与环流的关系[J].高原气象39(2): 290-300.DOI: 10.7522/j.issn.1000-0534.2019.00023.
null
王毅荣, 王锡稳, 2006.中国黄土高原地区4~10月雨量时空变化特征分析[J].高原气象25(4): 737-743.
null
王毅荣, 林纾, 张存杰, 2007.中国黄土高原区域性暴雨时空变化及碎形特征[J].高原气象26(2): 373-379.
null
王毅荣, 吕世华, 2008.黄土高原降水对气候变暖响应的敏感性研究[J].冰川冻土30(1): 43-51.
null
王正兴, 2017.黄土高原地区-世界地理数据大百科辞条[J].全球变化数据学报1(1): 113.
null
徐宗学, 张楠, 2006.黄河流域近50年降水变化趋势分析[J].地理研究25(1): 27-34.
null
杨东, 程军奇, 李小亚, 等, 2012.甘肃黄土高原各级降水和极端降水时空分布特征[J].生态环境学报21(9): 1539-1547.
null
杨金虎, 江志红, 杨启国, 等, 2007.中国西北汛期极端降水事件分析[J].中国沙漠27(2): 320-325.
null
姚慧茹, 李栋梁, 王慧, 2017.1981-2012 年西北东部夏季降水不同强度雨日变化及其环流特征的对比分析[J].气象学报75(3): 384-399.
null
翟盘茂, 王萃萃, 李威, 2007.极端降水事件变化的观测研究[J].气候变化研究进展3(3): 144-148.
null
张宏芳, 潘留杰, 陈昊明, 等, 2020.秦岭及周边地区暖季降水日变化及其成因分析[J].高原气象39(5): 935-946.DOI: 10. 7522/j.issn.1000-0534.2019.00067.
null
张红丽, 张强, 2016.中国半干旱带干旱变化及其对夏季风进退的响应[C]//西安: 第33届中国气象学会年会S4干旱气象灾害监测预测及其影响与对策.
null
赵庆云, 张武, 王式功, 等, 2005.西北地区东部干旱半干旱区极端降水事件的变化[J].中国沙漠25(6): 904-909.
null
赵庆云, 宋松涛, 杨贵名, 等, 2014.西北地区暴雨时空变化及异常年夏季环流特征[J].兰州大学学报(自然科学版)50(4): 517-522.
null
赵阳, 徐祥德, 赵天良, 等, 2016.中国东部夏季暴雨极端事件与水汽输送相关流型特征[J].中国科学(地球科学)46(8): 1123-1140.
文章导航

/