论文

基于拉格朗日方法评估青藏高原若尔盖地区水汽输送特征

  • 刘煜 ,
  • 刘蓉 ,
  • 王欣 ,
  • 王作亮
展开
  • 1. 中国科学院西北生态环境资源研究院/中国科学院寒旱区陆面过程与气候变化重点实验室,甘肃 兰州 730000
    2. 中国科学院大学,北京 100049

刘煜(1996 -), 男, 四川达州人, 硕士研究生, 主要从事数值模式的物理过程研究. E-mail:

收稿日期: 2021-07-05

  修回日期: 2021-11-25

  网络出版日期: 2022-03-17

基金资助

第二次青藏高原综合科学考察研究项目(2019QZKK0105); 国家自然科学基金项目(42105089); 兰州大学半干旱气候变化教育部重点实验室开放基金(lzujbky-2021-kb02)

The Characteristics of Water Vapor Transport Based on Lagrangian Method in the Zoige, Qinghai-Xizang Plateau

  • Yu LIU ,
  • Rong LIU ,
  • Xin WANG ,
  • Zuoliang WANG
Expand
  • 1. Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions,Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences,Lanzhou 730000,Gansu,China
    2. University of Chinese academy of sciences,Beijing 100049,China

Received date: 2021-07-05

  Revised date: 2021-11-25

  Online published: 2022-03-17

摘要

干旱指数一直以来是评估一个地区地表干湿状态的有效标准。为了认识青藏高原若尔盖地区在极端干旱和湿润条件下的水汽空间分布格局, 本文基于地面观测资料计算月尺度的标准化降水蒸散指数, 提取2000 -2017年青藏高原若尔盖地区的极端干旱和湿润状况, 利用拉格朗日后向轨迹模型模拟该地区极端干湿条件下的水汽输送路径, 并评估潜在水汽源地的位置以及对研究区水汽输送的贡献率。结果表明: 湿润时期主要的水汽输送路径是受到西南季风影响的南支输送路径, 该路径起始于阿拉伯海、 孟加拉湾, 从西-南方向进入青藏高原, 再到达若尔盖地区, 而干旱时期的水汽输送路径主要受到西风带的影响, 占主导地位的路径则是起始于北美、 北大西洋的自西向东, 由亚欧大陆到达青藏高原北部。主要的水汽源地出现在青藏高原、 四川盆地、 孟加拉湾、 阿拉伯海等区域, 但受到不同时期的水汽输送路径影响, 各水汽源地在不同时期表现出了不同特征, 湿润时期主要的水汽源地出现在青藏高原南部(贡献率为35.98%), 而干旱时期主要的水汽源地则出现在青藏高原北部(贡献率为28.35%), 此外来自阿拉伯海以及孟加拉湾等地的水汽源地在湿润时期贡献率更高, 而研究区域本身以及四川区域的水汽贡献率则在干旱时期更高。分析结果将有助于理解极端干湿状态的形成机制, 进而加深对旱涝灾害机制的理解。

本文引用格式

刘煜 , 刘蓉 , 王欣 , 王作亮 . 基于拉格朗日方法评估青藏高原若尔盖地区水汽输送特征[J]. 高原气象, 2022 , 41(1) : 58 -67 . DOI: 10.7522/j.issn.1000-0534.2021.00100

Abstract

The drought index has always been a practical standard for assessing a specific region's dry and wet state.In order to better understand the spatial distribution pattern of water vapor transport in the Zoige region of the Qinghai-Xizang Plateau under extreme dry and wet conditions, this paper calculates the monthly standardized precipitation evapotranspiration index based on the ground observation data.It extracts the extreme drought and wet conditions in the Zoige region of the Qinghai-Xizang Plateau from 2000 to 2017.The Lagrangian backward trajectory model is used to simulate the water vapor transport path under extreme dry and wet conditions and evaluate the location of potential evapotranspiration water vapor sources and their contributions to the water vapor transport in the study area.The results show that the main water vapor transport path is concentrated in the south branch transport path affected by the southwest monsoon during the wet period.The route originates from the Arabian Sea and the Bay of Bengal and finally arrives at the Zoige from the western and southern flank of the Qinghai-Xizang Plateau.Moreover, the water vapor transport pathway during the drought period is mainly affected by the westerlies.The dominant path starts from North America and the North Atlantic, spreads from west to east, the mid-latitude Eurasian continent, and finally reaches the north of the Qinghai-Xizang Plateau.The main water vapor sources appeared in the Qinghai-Xizang Plateau, Sichuan Basin, Bay of Bengal, Arabian Sea, and other regions.Affected by the water vapor transmission path in different periods, these water vapor sources show different characteristics.In the wet period, the water vapor source is mainly distributed around the south of the Qinghai-Xizang Plateau (the contribution rate is 35.98%).In contrast, the primary water vapor source during the drought period appears in the northern Qinghai-Xizang Plateau (the contribution rate is 28.35%).In addition, the contribution rate of water vapor sources from the Arabian Sea and the Bay of Bengal is higher in the wet period.In contrast, the contribution rate of water vapor in the local Zoige area and Sichuan is higher in the drought period.The analysis results will help to understand the formation mechanism of water vapor during extreme drought and wet states, how the water vapor sources work, and the contribution rate of the water vapor sources.This research can deepen the understanding of the mechanism of drought and flood disasters.

参考文献

null
Chen H P Sun J Q2015.Changes in drought characteristics over China using the standardized precipitation evapotranspiration index[J].Journal of Climate28(13): 5430-5447.DOI: 10.1175/JCLI-D-14-00707.1.
null
Dubrovsky M Svoboda M D Trnka M al et2008.Application of relative drought indices in assessing climate-change impacts on drought conditions in Czechia [J].Theoretical and Applied Climatology, 96: 155-171.DOI: 10.1007/s00704-008-0020-x.
null
Eom HS Myoung-Seok S2011.Seasonal and diurnal variations of stability indices and environmental parameters using NCEP FNL data over East Asia[J].Asia-Pacific Journal of Atmospheric Sciences47(2): 181-192.DOI: 10.1007/s13143-011-0007-x.
null
Hayes M J Svoboda M D Wilhite D A al et1999.Monitoring the 1996 drought using the Standardized Precipitation Index[J].Bulletin of the American Meteorological Society80(3): 429-438.DOI: 10.1175/1520-0477(1999)080<0429: MTDUTS>2.0.CO; 2.
null
He B Zhong Z Q Guo L L al et2019.Performance of various forms of the Palmer Drought Severity Index in China from 1961 to 2013[J].Journal of Hydrometeorology20(9): 1867-1885.DOI: 10.1175/JHM-D-18-0247.1.
null
Heim R R2002.A review of twentieth-century drought indices used in the United States[J].Bulletin of the American Meteorological Society83(8): 1149-1165.
null
Liu R Wen J Wang X al et2021.Case studies of atmospheric moisture sources in the source region of the Yellow River from a Lagrangian perspective[J].International Journal of Climatology,1-15.DOI: 10.1002/joc.7317.
null
Liu Z C Lu G H He H al et2017.Anomalous features of water vapor transport during severe summer and early fall droughts in southwest China [J].Water9(4): 244.DOI: 10.3390/w9040244.
null
Mishra A K Singh V P2010.A review of drought concepts[J].Journal of Hydrology391(1/2): 202-216.DOI: 10.1016/j.jhydrol.2010.07.012.
null
Sodemann H Schwierz C Wernli H2008.Interannual variability of Greenland winter precipitation sources: Lagrangian moisture diagnostic and North Atlantic Oscillation influence [J].Journal of Geophysical Research, 113(D3).DOI: 10.1029/2007JD008503.
null
Stohl A James P2004.A Lagrangian analysis of the atmospheric branch of the global water cycle.part I: Method description, validation, and demonstration for the August 2002 flooding in central Europe[J].Journal of Hydrometeorology5(4): 656-678.DOI: 10.1175/1525-7541(2004)005<0656: ALAOTA>2.0.CO; 2.
null
Sun B Wang H J2014.Moisture sources of semiarid grassland in China using the Lagrangian particle model FLEXPART [J].Journal of Climate27(6): 2457-2474.DOI: 10.1175/JCLI-D-13-00517.1.
null
Tan C P Yang J P Li M2015.Temporal-spatial variation of drought indicated by SPI and SPEI in Ningxia Hui Autonomous Region, China[J].Atmosphere6(10): 1399-1421.DOI: 10.3390/atmos6101399.
null
Trenberth K E1998.Atmospheric moisture residence times and cycling: Implications for rainfall rates and climate change[J].Climatic Change39(4): 667-694.DOI: 10.1023/A: 1005319109110.
null
Vicente-Serrano S M Begueria S Lopez-Moreno J I2010.A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index[J].Journal of Climate23(7): 1696-1718.DOI: 10.1175/2009JCLI2909.1.
null
Vicente-Serrano S M Begueria S Lopez-Moreno J I2011.Comment on “characteristics and trends in various forms of the Palmer Drought Severity Index (PDSI) during 1900-2008” by Aiguo Dai[J].Journal of Geophysical Research, 116.DOI: 10.1029/2011JD016410.
null
Wells N Goddard S Hayes M J2004.A self-calibrating Palmer Drought Severity Index[J].Journal of Climate17(12): 2335-2351.DOI: 10.1175/1520-0442(2004)017<2335: ASPDSI>2.0.CO; 2.
null
Yu M Li Q Hayes M J al et2014.Are droughts becoming more frequent or severe in China based on the Standardized Precipitation Evapotranspiration Index: 1951-2010?[J].International Journal of Climatology34(3): 545-558.DOI: 10.1002/joc.3701.
null
Zhang C Tang Q H Chen D L2017.Recent changes in the moisture source of precipitation over the Tibetan Plateau[J].Journal of Climate30(5): 1807-1819.DOI: 10.1175/JCLI-D-15-0842.1.
null
Zhang C Tang Q H Chen D L al et2019.Moisture source changes contributed to different precipitation changes over the Northern and Southern Tibetan Plateau[J].Journal of Hydrometeorology20(2): 217-229.DOI: 10.1175/JHM-D-18-0094.1.
null
Zhao H Y Gao G An W al et2017.Timescale differences between SC--PDSI and SPEI for drought monitoring in China[J].Physics and Chemistry of the Earth, Parts A/B/C, 102: 48-58.DOI: 10. 1016/j.pce.2015.10.022.
null
陈斌, 徐祥德, 施晓晖, 2011.拉格朗日方法诊断2007年7月中国东部系列极端降水的水汽输送路径及其可能蒸发源区[J].气象学报69(5): 810-818.DOI: 10.11676/qxxb2011.071.
null
陈亚玲, 文军, 刘蓉, 等, 2022.江河源区水汽输送与收支的时空演变特征分析[J].高原气象41(1): 167-176. DOI: 10.7522/j.issn.1000-0534. 2021.00049.
null
方宇, 张学霞, 郭长庆, 2020.若尔盖湿地黑颈鹤生境适宜性[J].生态学杂志39(9): 3021-3031.DOI: 10.13292/j.1000-4890. 202009.020.
null
高松影, 赵婷婷, 宋丽丽, 等, 2020.辽宁省冬季区域暴雪水汽输送特征[J].冰川冻土42(2): 439-446.DOI: 10.7522/j.issn. 1000-0240.2020.0046.
null
黄梦杰, 贺新光, 卢希安, 等, 2020.长江流域的非平稳SPI干旱时空特征分析[J].长江流域资源与环境29(7): 1597-1611.DOI: 10.11870 /cjlyzyyhj202007013.
null
李建军, 张军龙, 郭玉涛, 2016.晚更新世以来若尔盖盆地的地层划分及构造-气候意义[J].地震地质38(4): 950-963.DOI: 103969/j.issn.0253-4967201604.012.
null
李伟光, 易雪, 侯美亭, 等, 2012.基于标准化降水蒸散指数的中国干旱趋势研究[J].中国生态农业学报20(5): 643-649.DOI: 10.3724/SP.J.1011.2012.00643.
null
李志威, 王兆印, 张晨笛, 等, 2014.若尔盖沼泽湿地的萎缩机制[J].水科学进展25(2): 172-180.DOI: 10.14042/j.cnki. 32.1309.2014.02.005.
null
刘彩红, 朱西德, 石顺吉, 等, 2009.“三江源”夏季降水异常与大气环流异常的关系[J].气象35(7): 39-45.DOI: 10.7519/j.issn.1000-0526.2009.7.006.
null
刘佳, 陈超, 秦宁生, 等, 2016.青藏高原若尔盖生态区水资源对气候变化的响应[J].冰川冻土38(2): 498-508.DOI: 10.7522/j.issn.1000-0240.2016.0056.
null
刘珂, 姜大膀, 2015.基于两种潜在蒸散发算法的SPEI对中国干湿变化的分析[J].大气科学39(1): 23-36.DOI: 10.3878/j.issn.1006-9895.1402.13265.
null
陆宣承, 文军, 田辉, 等, 2020.若尔盖高寒湿地-大气间水热交换湍流通量的日变化特征分析[J].高原气象39(4): 719-728.DOI: 10.7522/j.issn.1000-0534.2019.00073.
null
苏彦入, 吕世华, 范广洲, 2018.青藏高原夏季大气边界层高度与地表能量输送变化特征分析[J].高原气象37(6): 1470-1485.DOI: 10.7522/j.issn.1000-0534.2018.00040.
null
孙立群, 李铁键, 李晴岚, 等, 2019.黄河源秋季洪峰对西风指数的响应[J].冰川冻土41(6): 1475-1482.DOI: 10.7522/J.JSSN.1000-0240.2019.0028.
null
王可丽, 程国栋, 丁永建, 等, 2006.黄河、 长江源区降水变化的水汽输送和环流特征[J].冰川冻土28(1): 8-14.
null
王林, 陈文, 2014.标准化降水蒸散指数在中国干旱监测的适用性分析[J].高原气象33(2): 423-431.DOI: 10.7522 /j.issn. 1000-0534.2013.00048.
null
王美月, 王磊, 李谢辉, 等, 2022.三江源地区暴雨的水汽输送源地及路径研究]J].高原气象41(1): 68-78.DOI: 10.7522/j.issn.1000-0534.2020.00097.
null
王素萍, 王劲松, 张强, 等, 2020.多种干旱指数在中国北方的适用性及其差异原因初探[J].高原气象39(3): 628-640.DOI: 10.7522/j.issn.1000-0534.2019.0049.
null
王作亮, 文军, 李振朝, 等, 2019.典型干旱指数在黄河源区的适宜性评估[J].农业工程学报35(21): 186-195.DOI: 10.11975/j.issn.1002-6819.2019.21.022.
null
温庆志, 孙鹏, 张强, 等, 2020.非平稳标准化降水蒸散指数构建及中国未来干旱时空格局[J].地理学报75(7): 1465-1482.DOI: 10.11821/dlxb202007010.
null
徐祥德, 陶诗言, 王继志, 等, 2002.青藏高原-季风水汽输送“大三角扇型”影响域特征与中国区域旱涝异常的关系[J].气象学报60(3): 257-266.DOI: 10.11676/qxxb2002.032.
null
赵娜娜, 王贺年, 张贝贝, 等, 2019.若尔盖湿地流域径流变化及其对气候变化的响应[J].水资源保护35(5): 40-47.DOI: 10.3880/j.issn.1004-6933.2019.05.008.
null
曾钰婷, 张宇, 周可, 等, 2020.青藏高原那曲地区夏季水汽来源及输送特征分析[J].高原气象39(3): 467-476.DOI: 10.7522/j.issn.1000-0534.2019.00120.
null
周丹, 张勃, 罗静, 等, 2014.基于SPEI的华北地区近50年干旱发生强度的特征及成因分析[J].自然灾害学报23(4): 192-202.DOI: 10.13577/j.jnd.2014.0425.
null
朱丽, 刘蓉, 王欣, 等, 2019.基于FLEXPART模式对黄河源区盛夏降水异常的水汽源地及输送特征研究[J].高原气象38(3): 484-496.DOI: 10.7522/j.issn.1000-0534.2019.00015.
null
朱圣男, 刘卫林, 万一帆, 等, 2020.抚河流域干旱时空分布特征及其与ENSO的相关性[J].水土保持研究27(6): 131-138.DOI: 10.13869/j.cnki.rswc.2020.06.019.
文章导航

/