null | Alexeev V A, Langen P L, Bates J R, 2005.Polar amplification of surface warming on an aquaplanet in “ghost forcing” experiments without sea ice feedbacks[J]. Climate Dynamics, 24(7/8): 655-666.DOI: 10.1007/s00382-005-0018-3 . |
null | Akperov M G, Mokhov I I, Dembitskaya M A, et al, 2019.Lapse Rate Peculiarities in the Arctic from Reanalysis Data and Model Simulations[J]. Russian Meteorology and Hydrology, 44(2): 97-102.DOI: 10.3103/S106837391902002X . |
null | Ao J, Sun J Q, 2015.Connection between November snow cover over Eastern Europe and winter precipitation over East Asia[J]. International Journal of Climatology, 36(5): 236-2404.DOI: 10. 1002/joc4484 . |
null | Baldwin M P, Dunkerton T J, 2001.Stratospheric harbingers of anomalous weather regimes[J]. Science, 294(5542): 581-584.DOI: 10.1126/science.1063315 . |
null | Barnes E A, 2013.Revisiting the evidence linking Arctic amplification to extreme weather in midlatitudes[J]. Geophysical Research Letters, 40(17): 4734-4739.DOI: 10.1002/grl.50880 . |
null | Basu S, Zhang X D, Wang Z M, 2018.Eurasian winter storm activity at the end of the century: A CMIP5 multi-model ensemble projection[J]. Earth's Future, 6(1): 64-70.DOI: 10.1002/2017ef000670 . |
null | Bintanja R, van der Linden E C, 2013.The changing seasonal climate in the Arctic[J]. Scientific Reports, 3(1): 1556.DOI: 10.1038/srep01556 . |
null | Boeke R C, Taylor P C, 2018.Seasonal energy exchange in sea ice retreat regions contributes to differences in projected Arctic warming[J]. Nature Communications, 9(1): 5017.DOI: 10.1038/s41467-018-07061-9 . |
null | Bueh C, 2011.Large-scale circulation features typical of wintertime extensive and persistent low temperature events in China[J]. Atmospheric and Oceanic Science Letters, 4(4): 235-241.DOI: 10.1007/s00382-012-1587-6 . |
null | Cai M, 2005.Dynamical amplification of polar warming[J]. Geophysical Research Letters, 32(22): L22710.DOI: 10.1029/2005GL024481 . |
null | Cavalieri D J, Parkinson C L, Vinnikov K Y, 2003.30-Year satellite record reveals contrasting Arctic and Antarctic decadal sea ice variability[J]. Geophysical Research Letters, 30(18): 1970.DOI: 10.1029/2003GL018031 . |
null | Cheung H N, Zhou W, Shao Y P, et al, 2013.Observational climatology and characteristics of wintertime atmospheric blocking over Ural-Siberia[J]. Climate Dynamics, 41(1): 63-79.DOI: 10. 1007/s00382-012-1587-6 . |
null | Chen X D, Luo D H, 2017.Arctic sea ice decline and continental cold anomalies: Upstream and downstream effects of Greenland blocking[J]. Geophysical Research Letters, 44(7): 3411-3419.DOI: 10.1002/2016GL072387 . |
null | Chung C E, R?is?nen P, 2011.Origin of the Arctic warming in climate models[J]. Geophysical Research Letters, 38(21): L21704.DOI: 10.1029/2011GL049816 . |
null | Colman R A, 2013.Surface albedo feedbacks from climate variability and change[J]. Journal of Geophysical Research: Atmospheres, 118(7): 2827-2834.DOI: 10.1002/jgrd.50230 . |
null | Cohen J, Barlow M, Kushner P J, et al, 2007.Stratosphere-troposphere coupling and links with Eurasian land surface variability[J]. Journal of Climate, 20(21): 5335-5343.DOI: 10.1175/2007JCLI1725.1 . |
null | Cohen J L, Furtado J C, Barlow M A, et al, 2012.Arctic warming, increasing snow cover and widespread boreal winter cooling[J]. Environmental Research Letters, 7(1): 014007.DOI: 10.1088/1748-9326/7/1/014007 . |
null | Cohen J, Furtado J C, Jones J, et al, 2014a.Linking Siberian snow cover to precursors of stratospheric variability[J]. Journal of Climate, 27(14): 5422-5432.DOI: 10.1175/JCLI-D-13-00779.1 . |
null | Cohen J, Screen J A, Jason C, et al, 2014b.Recent Arctic amplification and extreme mid-latitude weather[J]. Nature Geoscience, 7(9): 627–637.DOI: 10.1038/ngeo2234 . |
null | Comiso J C, Hall D K, 2014.Climate trends in the Arctic as observed from space[J]. Wiley Interdisciplinary Reviews: Climate Change, 5(3): 389-409.DOI: 10.1002/wcc.277 . |
null | Curry J A, Schramm J L, Ebert E E, 1993.Impact of clouds on the surface radiation balance of the Arctic Ocean[J]. Meteorology and Atmospheric Physics, 51(3/4): 197-217.DOI: 10.1007/bf01030494 . |
null | Dai A, Luo D, Song M, et al, 2019.Arctic amplification caused by sea-ice loss under increasing CO 2 [J]. Nature Communications, 10(1): 121.DOI: 10.1038/s41467-018-07954-9 . |
null | Eastman R, Warren S G, 2010.Interannual variations of Arctic cloud types in relation to sea ice[J]. Journal of Climate, 23(15): 4216-4232.DOI: 10.1175/2010JCLI3492.1 . |
null | Francis J A, Hunter E, 2006.New insight into the disappearing Arctic sea ice[J]. Geophysical Research Letters, 87(46): 509-524.DOI: 10.1029/2006EO460001 . |
null | Francis J A, Vavrus S J, 2012.Evidence linking Arctic amplification to extreme weather in mid-latitudes[J]. Geophysical Research Letters, 39(6): L6801.DOI: 10.1029/2012gl051000 . |
null | Graversen R G, Langen P L, Mauritsen T, 2014.Polar amplification in CCSM4: Contributions from the lapse rate and surface albedo feedbacks[J]. Journal of Climate, 27(12): 4433-4450.DOI: 10.1175/JCLI-D-13-00551.1 . |
null | Ghatak D, Miller J, 2013.Implications for Arctic amplification of changes in the strength of the water vapor feedback[J]. Journal of Geophysical Research: Atmospheres, 118(14): 7569-7578.DOI: 10.1002/jgrd.50578 . |
null | |
null | |
null | Hoerling M P, Hurrell J W, Xu T, 2011.Tropical origins for recent North Atlantic climate change[J]. Science, 292(5514): 90-92.DOI: 10.1126/science.1058582 . |
null | Holland M M, Bitz C M, 2003.Polar amplification of climate change in coupled models[J]. Climate Dynamics, 21(3/4): 221-232.DOI: 10.1007/s00382-003-0332-6 . |
null | Honda M J, Jun I, Shozo Y, 2009.Influence of low Arctic sea-ice minima on anomalously cold Eurasian winters[J]. Geophysical Research Letters, 36(8): L08707.DOI: 10.1029/2008GL037079 . |
null | Hopsch S, Cohen J, Dethloff K, 2012.Analysis of a link between fall Arctic sea-ice concentration and atmospheric patterns in the following winter[J]. Tellus A: Dynamic Meteorology and Oceanography, 64(1): 18624.DOI: 10.3402/tellusa.v64i0.18624 . |
null | Huang J B, Zhang X D, Zhang Q Y, et al, 2017.Recently amplified arctic warming has contributed to a continual global warming trend[J]. Nature Climate Change, 7(12): 875-879.DOI: 10. 1038/s41558-017-0009-5 . |
null | Hwang Y T, Frierson D M W, Jennifer E K, 2011.Coupling between Arctic feedbacks and changes in poleward energy transport[J]. Geophysical Research Letters, 38(17): L17704.DOI: 101029/2011GL048546 . |
null | IPCC, 2021.Climate Change 2021: The Physical Science Basis[R].Cambridge: Cambridge University Press. |
null | Jaiser R, Dethloff D, Handorf D, et al, 2012.Impact of sea ice cover changes on the Northern Hemisphere atmospheric winter circulation[J]. Tellus A: Dynamic Meteorology and Oceanography, 64(1): 11595.DOI: 10.3402/tellusav64i0.11595 . |
null | Kim B M, Son S K, Min S K, et al, 2014.Weakening of the stratospheric polar vortex by Arctic sea-ice loss[J]. Nature Communications, 5(1): 4646.DOI: 10.1038/ncomms5646 . |
null | Kosaka Y, Xie S P, 2013.Recent global-warming hiatus tied to equatorial Pacific surface cooling[J]. Nature: International Weekly Journal of Science, 501(7467): 403-407.DOI: 10.1038/nature12534 . |
null | Kug J S, Jeong J H, Jang Y S, et al, 2015.Two distinct influences of Arctic warming on cold winters over North America and East Asia[J]. Nature Geoscience, 8(10): 759-762.DOI: 10.1038/ngeo2517 . |
null | Liu J P, Curry J A, Wang H J, et al, 2012.Impact of declining Arctic sea ice on winter snowfall[J]. Proceedings of the National Academy of Sciences of the United States of America, 109(11): 4074-4079.DOI: 10.1073/pnas.1114910109 . |
null | Luo D, Xiao Y, Yao Y, et al, 2016.Impact of Ural blocking on winter warm arctic-cold Eurasian anomalies, Part I: blocking-induced amplification[J]. Journal of Climate, 29(11): 3925-3947.DOI: 10.1175/JCLI-D-15-0611.1 . |
null | Manabe S, Stouffer R J, 1980.Sensitivity of a global climate model to an increase of CO 2 concentration in the atmosphere[J]. Journal of Geophysical Research: Oceans, 85(C10): 5529-5554.DOI: 10.1029/JC085iC10p05529 . |
null | Matsumura S, Kosaka Y, 2019.Arctic-Eurasian climate linkage induced by tropical ocean variability[J]. Nature Communications, 10(1): 3441.DOI: 10.1038/s41467-019-11359-7 . |
null | Messori G, Woods C, Caballero R, 2018.On the drivers of winter‐time temperature extremes in the high Arctic[J]. Journal of Climate, 31(4): 1597-1618.DOI: 10.1175/JCLI-D-17-0386.1 . |
null | Mills C M, Cassano J J, Cassano E N, 2016.Midlatitude atmospheric responses to Arctic sensible heat flux anomalies in Community Climate Model, Version4[J]. Geophysical Research Letters, 43(23): 12270-12277.DOI: 10.1002/2016GL071356 . |
null | Mori M, Watanabe M, Shiogama H, et al, 2014.Robust Arctic sea-ice influence on the frequent Eurasian cold winters in past decades[J]. Nature Geoscience, 7(12): 869-873.DOI: 10.1038/ngeo2277 . |
null | Mudryk L R, Kushner P J, Derksen K, 2013.Interpreting observed Northern Hemisphere snow trends with large ensembles of climate simulations[J]. Climate Dynamics, 43(1/2): 345-359.DOI: 10.1007/s00382-013-1954-y . |
null | Moon T A, Druckenmiller M L, Thoman R L, et al, 2021.Arctic Report Card 2021[R].NOAA.DOI: 10.25923/5s0f-5163. |
null | Nakamura T, Yamazaki K, Sato T, et al, 2019.Memory effects of Eurasian land processes cause enhanced cooling in response to sea ice loss[J]. Nature Communications, 10(1): 5111.DOI: 10.1038/s41467-019-13124-2 . |
null | Overland J E, Wood K R, Wang M Y, 2011.Warm Arctic-cold continents: climate impacts of the newly open Arctic Sea[J]. Polar Research, 30(1): 15787.DOI: 10.3402/polar.v30i0.15787 . |
null | |
null | Peings Y, Magnusdottir G, 2014.Response of the wintertime northern hemisphere atmospheric circulation to current and projected Arctic Sea ice decline: a numerical study with CAM5[J]. Journal of Climate, 27(1): 244-264.DOI: 10.1175/jcli-d-13-00272.1 . |
null | Pithan F, Mauritsen T, 2014.Arctic amplification dominated by temperature feedbacks in contemporary climate models[J]. Nature Geoscience, 7(3): 181-184.DOI: 10.1038/NGEO2071 . |
null | Polyakov I V, Pnyushkov A V, Alkire M B, et al, 2017.Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of the Arctic Ocean[J]. Science, 356(6335): 285-291.DOI: 10.1126/science.aai8204 . |
null | Sato K, Inoue J, Watanabe M, et al, 2014.Influence of the Gulf Stream on the Barents Sea ice retreat and Eurasian coldness during early winter[J]. Environmental Research Letters, 9(8): 101003.DOI: 10.1088/1748-9326/9/8/084009 . |
null | Screen J A, Simmonds I, 2010.The central role of diminishing sea ice in recent Arctic temperature amplification[J]. Nature: International Weekly Journal of Science, 464(7293): 1334-1337.DOI: 10.1038/nature09051 . |
null | Screen J A, Simmonds I, 2013.Exploring links between Arctic amplification and mid-latitude weather[J]. Geophysical Research Letters, 40(5): 959-964.DOI: 10.1002/grl.50174 . |
null | Screen J A, 2017.Far-flung effects of Arctic warming[J]. Nature Geoscience, 10(4): 253-254.DOI: 10.1038/ngeo2924 . |
null | Serreze M C, Barrett A P, Stroeve J, 2012.Recent changes in tropospheric water vapor over the Arctic as assessed from radiosondes and atmospheric reanalyses[J]. Journal of Geophysical Research: Atmospheres, 117(D10): D10104.DOI: 10.1029/2011JD017421 . |
null | Semmler T, Lukrecia S, Thomas J, et al, 2016.Seasonal atmospheric responses to reduced Arctic sea ice in an ensemble of coupled model simulations[J]. Journal of Climate, 29(16): 5893-5913.DOI: 10.1175/JCLI-D-15-0586.1 . |
null | Singh D, Flanner M G, Perket J, 2015.The global land shortwave cryosphere radiative effect during the MODIS era[J]. The Cryosphere, 9(6): 2057-2070.DOI: 10.5194/tc-9-2057-2015 . |
null | Smeed D A, McCarthy G D, Cunningham S A, et al, 2014.Observed decline of the Atlantic meridional overturning circulation 2004–2012[J]. Ocean Science (OS), 10(1): 29-38.DOI: 10.5194/os-10-29-2014 . |
null | Vavrus S J, Holland M M, Jahn A, et al, 2012.Twenty-First-Century Arctic Climate Change in CCSM4[J]. Journal of Climate, 25(8): 2696-2710.DOI: 10.1175/JCLI-D-11-00220.1 . |
null | Soden B J, Held I M, Colman R, et al, 2008.Quantifying climate feedbacks using radiative kernels[J]. Journal of Climate, 21(14): 3504–3520.DOI: 10.1175/2007JCLI2110.1 . |
null | Spielhagen R F, Werner K, S?rensen S A, et al, 2011.Enhanced modern heat transfer to the Arctic by warm Atlantic water[J]. Science, 331(6016): 450-453.DOI: 10.1126/science.1197397 . |
null | Stroeve J C, Markus T, Boisvert L, et al, 2014.Changes in Arctic melt season and implications for sea ice loss[J]. Geophysical Research Letters, 41(4): 1216-1225.DOI: 10.1002/2013GL058951 . |
null | Schweiger A J, Steele M, Zhang J L, et al, 2021.Accelerated sea ice loss in the Wandel Sea points to a change in the Arctic’s Last Ice Area[J]. Communications Earth & Environment, 2(1): 122.DOI: 10.1038/s43247-021-00197-5 . |
null | Taylor P C, Cai M, Hu A, et al, 2013.A decomposition of feedback contributions to polar warming amplification[J]. Journal of Climate, 26(18): 7023-7043.DOI: 10.1175/JCLI-D-12-00696.1 . |
null | Walsh J E, 2014.Intensified warming of the Arctic: causes and impacts on middle latitudes[J]. Global and Planetary Change, 117(3): 52-63.DOI: 10.1016/j.gloplacha.2014.03.003 . |
null | |
null | Winton M, 2006.Amplified Arctic climate change: what does surface albedo feedback have to do with it?[J]. Geophysical Research Letters, 33(3): L03701.DOI: 10.1029/2005GL025224 . |
null | Yoshimori M, Ayako A O, La?né A, 2017.The role of atmospheric heat transport and regional feedbacks in the Arctic warming at equilibrium[J]. Climate Dynamics, 49(9/10): 3457-3472.DOI: 10.1007/s00382-017-3523-2 . |
null | Zhang X, Ikeda M, Walsh J E, 2003.Arctic sea-ice and freshwater changes driven by the atmospheric leading mode in a coupled sea ice-ocean model[J]. Journal of Climate, 16(13): 2159-2177.DOI: 10.1175/2758.1 . |
null | |
null | |
null | |