null | Bry? K, Bry? T, Sayegh M A, al et, 2020.Characteristics of heat fluxes in subsurface shallow depth soil layer as a renewable thermal source for ground coupled heat pumps[J]. Renewable Energy, 146: 1846-1866.DOI: 10.1016/j.renene.2019.07.101 . |
null | Chang X L, Jin H J, Wang Y P, al et, 2012.Influences of vegetation on permafrost: a review[J]. Acta Ecologica Sinica, 32: 7981-7990.DOI: 10.5846/stxb201202120181 . |
null | Chang Y, Lyu S H, Luo S Q, al et, 2018.Estimation of permafrost on the Tibetan Plateau under current and future climate conditions using the CMIP5 data[J]. International Journal of Climatology, 38: 5659-5676.DOI: 10.1002/joc.5770 . |
null | Chen B L, Luo S Q, Lu S H, al et, 2014.Effects of the soil freeze-thaw process on the regional climate of the Qinghai-Tibet Plateau[J]. Climate Research, 59: 243-257, DOI: 10.3354/cr01217 . |
null | Chen G S, Notaro M, Liu Z Y, al et, 2012.Simulated Local and Remote Biophysical Effects of Afforestation over the Southeast United States in Boreal Summer[J]. Journal of Climate, 25(13): 4511-4522.DOI: 10.1175/JCLI-D-11-00317.1 . |
null | Dai Y J, Xin Q C, Wei N, al et, 2019.A global high-resolution data set of soil hydraulic and thermal properties for land surface modeling[J]. Journal of Advances in Modeling Earth Systems, 11(9): 2996-3023.DOI: 10.1029/2019ms001784 . |
null | Douglas T A, Turetsky M R, Koven C D, 2020.Increased rainfall stimulates permafrost thaw across a variety of Interior Alaskan boreal ecosystems[J]. Climate and Atmospheric Science, 3(1).DOI: 10.1038/s41612-020-0130-4 . |
null | Fang X W, Luo S Q, Lyu S H, 2019. Observed soil temperature trends associated with climate change in the Tibetan Plateau, 1960-2014.[J] Theoretical & Applied Climatology, 135(1): 169-181.DOI: 10.1007/s00704-017-2337-9 . |
null | Fisher J P, Estop-Aragones C, Thierry A, al et, 2016.The influence of vegetation and soil characteristics on active-layer thickness of permafrost soils in boreal forest[J]. Global Change Biology, 22(9): 3127-3140.DOI: 10.1111/gcb.13248 . |
null | Gao J Q, Xie Z H, Wang A W, al et, 2019.A new frozen soil parameterization including frost and thaw fronts in the community land model[J]. Journal of Advances in Modeling Earth Systems, 11(3): 659-679.DOI: 10.1029/2018ms001399 . |
null | Guo D L, Wang H J, 2014.Simulated change in the near-surface soil freeze/thaw cycle on the Tibetan Plateau from 1981 to 2010[J]. Chinese Science Bulletn, 59(20): 2439-2448.DOI: 10.1007/s11434-014-0347-x . |
null | Huang C C, Zheng X G, Tait A, al et, 2014.On using smoothing spline and residual correction to fuse rain gauge observations and remote sensing data[J]. Journal of Hydeology, 508: 410-417.DOI: 10.1016/j.jhydrol.2013.11.022 . |
null | Iijima Y, Fedorov A N, Park H, al et, 2010.Abrupt increases in soil temperatures following increased precipitation in a permafrost region, central Lena River basin, Russia[J]. Permafrost and Periglacial Processes, 21(1): 30-41.DOI: 10.1002/ppp.662 . |
null | Jin H J, He R X, Cheng G D, al et, 2009.Changes in frozen ground in the source area of the Yellow River on the Qinghai-Tibet Plateau, China, and their eco-environmental impacts[J]. Environmental Research Letters, 4(4): 045206.DOI: 10.1088/1748-9326/4/4/045206 . |
null | Jin H J, Wang S L, Lv S H, al et, 2010.Features and degradation of frozen ground in the sources area of the Yellow River, China[J]. Journal of Glaciology Geocryology, 32(1): 10-17.DOI: 10.1021/ic100140j . |
null | Lawrence D M, Swenson S C, 2011.Permafrost response to increasing Arctic shrub abundance depends on the relative influence of shrubs on local soil cooling versus large-scale climate warming[J]. Environmental Research Letters, 6(4): 045504.DOI: 10. 1088/1748-9326/6/4/045504 . |
null | Li R, Zhao L, Ding Y J, al et, 2012.Temporal and spatial variations of the active layer along the Qinghai-Tibet Highway in a permafrost region[J]. Chinese Science Bulletin, 57(35): 4609-4616.DOI: 10.1007/s11434-012-5323-8 . |
null | Liang L Q, Li L J, Liu C M, al et, 2013.Climate change in the Tibetan Plateau Three Rivers Source Region: 1960-2009[J]. International Journal of Climatology, 33(13): 2900-2916.DOI: 10. 1002/joc.3642 . |
null | Liu G S, Wang G X, Hong-Chang H U, al et, 2009.Influence of vegetation coverage on water and heat processes of the active layer in permafrost regions of the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 31(1): 89-95.DOI: 10.1016/S1003-6326(09)60084-4 . |
null | Liu Y Q, Stanturf J, Lu H Q, 2008.Modeling the potential of the Northern China forest shelterbelt in improving hydroclimate conditions[J]. Journal of the American Water Resources Association, 44(5): 1176-1192.DOI: 10.1111/j.1752-1688.2008.00240.x . |
null | Lu Y, Williams I N, Bagley J E, al et, 2017.Representing winter wheat in the Community Land Model (version4.5)[J]. Geoscientific Model Development, 10(5): 1873-1888.DOI: 10.5194/gmd-10-1873-2017 . |
null | Luo D L, Jin H J, He R X, al et, 2018a.Characteristics of water-heat exchanges and inconsistent surface temperature changes at an elevational permafrost site on the Qinghai-Tibet Plateau[J]. Journal of Geophysical Research: Atmospheres, 123(8): 10057-10075.DOI: 10.1029/2018jd028298 . |
null | Luo S Q, Chen B L, Lyu S H, al et, 2018b.An improvement of soil temperature simulations on the Tibetan Plateau[J]. Sciences in Cold and Arid Regions, 10(1): 80-94.DOI: 10.3724/sp.j. 1226.2018.00080 . |
null | Luo S Q, Fang X W, Lyu S H, al et, 2016.Frozen ground temperature trends associated with climate change in the Tibetan Plateau Three River Source Region from 1980 to 2014[J]. Climate Research, 67(3): 241-255.DOI: 10.3354/cr01371 . |
null | Luo S Q, Fang X W, Lyu S H, al et, 2017a.Improving CLM4.5 simulations of land-atmosphere exchanges during freeze-thaw processes on the Tibetan Plateau[J]. Journal of Meteorological Research, 31(5): 916-930.DOI: 10.1007/s13351-017-6063-0 . |
null | Luo S Q, Fang X W, Lü S H, al et, 2017b.Interdecadal changes in the freeze depth and period of frozen soil on the Three Rivers Source Region in China from 1960 to 2014[J]. Advances in Meteorology, 2017(5): 1-14.DOI: 10.1155/2017/5931467 . |
null | Luo S Q, Lyu S H, Zhang Y, 2009.Development and validation of the frozen soil parameterization scheme in Common Land Model[J]. Cold Regions Science and Technology, 55(1): 130-140.DOI: /10.1016/j.coldregions.2008.07.009 . |
null | Luo S Q, Wang J Y, Pomeroy J W, al et, 2020.Freeze-thaw changes of seasonally frozen ground on the Tibetan Plateau from 1960 to 2014[J]. Journal of Climate, 33 (21): 9427-9446.DOI: 10. 1175/JCLI-D-19-0923.1 . |
null | Ma D, Liu Z Y, Lu S H, al et, 2013a.Short-term climatic impacts of afforestation in the East Asian monsoon region[J]. Chinese Science Bulletin, 58(17): 2073-2081.DOI: 10.1007/s11434-012-5661-6 . |
null | Ma D, Luo S Q, Guo D L, al et, 2021.Simulated effect of soil freeze-thaw process on surface hydrologic and thermal fluxes in frozen ground region of the Northern Hemisphere[J]. Sciences in Cold and Arid Regions, 13(1).18-29.DOI: 10.3724/SP.J.1226.2021.20059 . |
null | Ma D, Notaro M, Liu Z Y, al et, 2013b.Simulated impacts of afforestation in East China monsoon region as modulated by ocean variability[J]. Climate Dynamics, 41(9-10): 2439-2450.DOI: 10.1007/s00382-012-1592-9 . |
null | Meng X H, Li R, Luan L, al et, 2017.Detecting hydrological consistency between soil moisture and precipitation and changes of soil moisture in summer over the Tibetan Plateau[J]. Climate Dynam, 51(2): 1-12.DOI: 10.1007/s00382-017-3646-5 . |
null | Mu C C, Wu X D, Zhao Q, al et, 2017.Relict mountain permafrost area (Loess Plateau, China) exhibits high ecosystem respiration rates and accelerating rates in response to warming[J]. Journal of Geophysical Research: Biogeosciences, 122(10): 2580-2592.DOI: 10.1002/2017jg004060 . |
null | Neumann R B, Moorberg C J, Lundquist J D, al et, 2019.Warming effects of spring rainfall increase methane emissions from thawing permafrost[J]. Geophysical Research Letters, 46(3): 1393-1401.DOI: 10.1029/2018gl081274 . |
null | Ni J, Wu T H, Zhu X F, al et, 2021.Simulation of the present and future projection of permafrost on the Qinghai-Tibet Plateau with statistical and machine learning models[J]. Journal of Geophysical Research: Atmospheres, 126(2): 0-20.DOI: 10.1029/2020JD033402 . |
null | Pearson R G, Phillips S J, Loranty M M, al et, 2013.Shifts in Arctic vegetation and associated feedbacks under climate change[J]. Nature Climate Change, 3(7): 673-677.DOI: 10.1038/nclimate1858 . |
null | Piao S L, Friedlingstein P, Ciais P, al et, 2007.Growing season extension and its impact on terrestrial carbon cycle in the Northern Hemisphere over the past 2 decades[J]. Global Biogeochemical Cycles, 21(3): n/a-n/a.DOI: 10.1029/2006gb002888 . |
null | Poutou E, Krinner G, Genthon C, al et, 2004.Role of soil freezing in future boreal climate change[J]. Climate Dynamics, 23(6): 621-639.DOI: 10.1007/s00382-004-0459-0 . |
null | Qin Y, Yang D W, Gao B, al et, 2017.Impacts of climate warming on the frozen ground and eco-hydrology in the Yellow River source region, China[J]. Science of The Total Environment, 605-606: 830-841.DOI: 10.1016/j.scitotenv.2017.06.188 . |
null | Ran Y H, Li X, Cheng G D, 2018.Climate warming over the past half century has led to thermal degradation of permafrost on the Qinghai-Tibet Plateau[J]. The Cryosphere, 12(2): 595-608.DOI: 10.5194/tc-12-595-2018 . |
null | Richardson A D, Keenan T F, Migliavacca M, al et, 2013.Climate change, phenology, and phenological control of vegetation feedbacks to the climate system[J]. Agricultural and Forest Meteorology, 169: 156-173.DOI: 10.1016/j.agrformet.2012.09.012 . |
null | Rodell M, Famiglietti J S, Wiese D N, al et, 2018.Emerging trends in global freshwater availability[J]. Nature, 557(7707): 651-659.DOI: 10.1038/s41586-018-0123-1 . |
null | Shen M G, Piao S L, Jeong S-J, al et, 2015.Evaporative cooling over the Tibetan Plateau induced by vegetation growth[J]. Proceedings of the National Academy of Sciences, 112(30): 9299-9304.DOI: 10.1073/pnas.1504418112 . |
null | Shrestha P, Kurtz W, Vogel G, al et, 2018.Connection between root zone soil moisture and surface energy flux partitioning using modeling, observations, and data assimilation for a temperate grassland site in Germany[J]. Journal of Geophysical Research Biogeosciences, 123(9): 2839-2862.DOI: 10.1029/2016JG003753 . |
null | Swann A L, Fung I Y, Levis S, al et, 2010.Changes in Arctic vegetation amplify high-latitude warming through the greenhouse effect[J]. Proceedings of the National Academy of Sciences, 107(4): 1295-1300.DOI: 10.1073/pnas.0913846107 . |
null | Tarnocai C, Canadell J G, Schuur E A G, al et, 2009.Soil organic carbon pools in the northern circumpolar permafrost region[J]. Global Biogeochemical Cycles, 23, GB2023, DOI: 10.1029/2008GB003327 . |
null | Trenberth K E, Fasullo J T, Kiehl J, 2009.Earth's global energy budget[J]. Bulletin of the American Meteorological Society, 90: 311-324.DOI: 10.1175/2008bams2634.1 . |
null | Viterbo P, Beljaars A, Mahfouf J F, al et, 1999.The representation of soil moisture freezing and its impact on the stable boundary layer[J]. Quarterly Journal of the Royal Meteorological Society, 125: 2401-2426.DOI: 10.1002/qj.49712555904 . |
null | Wang G X, Bai W, Li N, al et, 2010.Climate changes and its impact on tundra ecosystem in Qinghai-Tibet Plateau, China[J]. Climatic change, 106: 463-482.DOI: 10.1007/s10584-010-9952-0 . |
null | Wang T H, Yang D W, Fang B J, al et, 2019.Data-driven mapping of the spatial distribution and potential changes of frozen ground over the Tibetan Plateau[J]. Science of the Total Environment, 649: 515-525.DOI: 10.1016/j.scitotenv.2018.08.369 . |
null | Wei N, Cui E Q, Huang K, al et, 2019.Decadal stabilization of soil inorganic nitrogen as a benchmark for global land models[J]. Journal of Advances in Modeling Earth Systems, 11: 1088-1099.DOI: 10.1029/2019ms001633 . |
null | Xue X, Guo J, Han B S, al et, 2009.The effect of climate warming and permafrost thaw on desertification in the Qinghai-Tibetan Plateau[J]. Geomorphology, 108: 182-190.DOI: 10.1016/j.geomorph.2009.01.004 . |
null | Yang K, Wang C H, 2019.Water storage effect of soil freeze-thaw process and its impacts on soil hydro-thermal regime variations[J]. Agricultural and Forest Meteorology, 265: 280-294.DOI: 10.1016/j.agrformet.2018.11.011 |
null | Zhang L, Guo H D, Wang C Z, al et, 2014.The long-term trends (1982-2006) in vegetation greenness of the alpine ecosystem in the Qinghai-Tibetan Plateau[J]. Environmental Earth Sciences, 2014, 72: 1827-1841.DOI: 10.1007/s12665-014-3092-1 . |
null | Zou D F, Zhao L, Sheng Y, al et, 2017.A new map of permafrost distribution on the Tibetan Plateau[J]. The Cryosphere, 11(6): 2527-2542.DOI: 10.5194/tc-11-2527-2017 . |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | 耿晓平, 李红梅, 申正涛, 等, 2019.三江源区气候变化及其对草地植被的影响分析[J].青海科技, 26(4): 83-87. |
null | |
null | |
null | |
null | |
null | 黄文洁, 2019.青藏高原高寒草地植被物候及其对气候变化的响应[D].兰州: 兰州大学, 1-67. |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | 刘亚, 2017.基于MODIS植被指数的三江源植被物候变化及其对气候变化的响应[D].南昌: 华东理工大学, 1-64. |
null | |
null | |
null | 罗谨, 王军邦, 杨永胜, 等, 2021.1991—2015年三江源河曲高寒草甸干湿状况及牧草产量变化的气候归因研究[J].冰川冻土, 43(5): 1542-1550. |
null | |
null | |
null | |
null | |
null | |
null | 秦大河, 2014.三江源区生态保护与可持续发展[M].北京: 科学出版社, 240-249. |
null | |
null | 苏小艺, 陈克龙, 2019.2005~2015年三江源国家公园植被覆盖度动态变化研究[J].青海草业, 28(1): 20-23. |
null | |
null | |
null | |
null | |
null | 王根绪, 宜树华, 2019.冰冻圈变化的生态过程与碳循环影响[M].北京: 科学出版社. |
null | 王绍令, 赵秀锋, 1997.青藏公路南段岛状冻土区内冻土环境变化[J].冰川冻土, 19(3): 231-238. |
null | |
null | |
null | 吴青柏, 沈永平, 施斌, 2003.青藏高原冻土及水热过程与寒区生态环境的关系[J].冰川冻土, 25(3): 250-255. |
null | |
null | |
null | |
null | |
null | 袁九毅, 闫水玉, 赵秀锋, 等, 1997.唐古拉山南麓多年冻土退化与蒿草草甸变化的关系[J].冰川冻土, 25(1): 47-56. |
null | |
null | |
null | 赵昶昱, 2017.欧亚陆地表层热含量的异常变化特征及其与东亚夏季风降水的可能联系[D].南京: 南京信息工程大学, 1-132. |
null | |
null | |
null | |
null | |
null | |
null | 朱宇蓉, 徐开宇, 付永超, 等, 2018.三江源地区1961~2017年冻土变化特征及影响[J].青海科技, 25(6): 73-76. |