综述

三江源冻土-植被相互作用及气候效应研究现状及展望

  • 罗斯琼 ,
  • 李红梅 ,
  • 马迪 ,
  • 李文静 ,
  • 王景元 ,
  • 谭晓晴 ,
  • 董晴雪
展开
  • 1. 中国科学院西北生态环境资源研究院/寒旱区陆面过程与气候变化重点实验室,甘肃 兰州 730000
    2. 青海省气候中心,青海 西宁 810001
    3. 中国科学院大学,北京 100049
    4. 成都信息工程大学大气科学学院/高原大气与环境四川省重点实验室,四川 成都 610225
罗斯琼(1979 -), 女, 湖南邵阳人, 研究员, 主要从事陆面过程及数值模拟研究. E-mail:

收稿日期: 2021-07-01

  修回日期: 2021-11-23

  网络出版日期: 2022-04-20

基金资助

国家自然科学基金项目(42075091); 第二次青藏高原综合科学考察研究项目(2019QZKK0105); 中国科学院“西部之光”交叉团队项目(xbzg-zdsys-202102); 甘肃省科技计划项目(20JR10RA070)

Review and Prospects of Frozen Soil-Vegetation Interaction and Climate Effects in the Three Rivers Source Region

  • Siqiong LUO ,
  • Hongmei LI ,
  • Di MA ,
  • Wenjing LI ,
  • Jingyuan WANG ,
  • Xiaoqing TAN ,
  • Qingxue DONG
Expand
  • 1. Key Laboratory for Land Process and Climate Change in Cold and Arid Regions,Northwest Institute of Ecological and Environmental Resources,Chinese Academy of Sciences,Lanzhou 730000,Gansu,China
    2. Qinghai Climate Center,Xining 810001,Qinghai,China
    3. University of Chinese Academy of Sciences,Beijing 100049,China
    4. School of Atmospheric Sciences,Plateau Atmosphere and Environment Key Laboratory of Sichuan Province,Chengdu University of Information Technology,Chengdu 610225,Sichuan,China

Received date: 2021-07-01

  Revised date: 2021-11-23

  Online published: 2022-04-20

摘要

三江源冻土、 植被二者之间存在着强烈的相互作用的关系, 并通过改变土壤水热特性以及地表-大气间的能量和水分交换过程影响局地气候, 加快或减缓气候变化, 源区的生态安全面临挑战。本文综述了近几十年来三江源区冻土、 植被特征及变化趋势、 冻土-植被相互作用过程以及冻土、 植被变化的气候效应, 在此基础上对未来研究方向进行了展望。主要认知如下: 三江源地区是季节性冻土和多年冻土的交汇带。植被类型有高寒草甸、 高寒草原、 高寒荒漠等, 植被生长季较短。近几十年来, 在全球变化影响下, 源区冻土和植被经历了快速的变化。冻土土壤温度明显升高; 多年冻土面积减小而季节性冻土面积增加; 多年冻土活动层厚度及融化期增加而季节性冻土最大冻结深度及冻结期减小。植被物候整体表现出返青期提前, 黄枯期推迟, 生长季延长的特征; 同时高寒植被生态系统的结构和功能也发生了明显变化。土壤的水、 热状态是连接冻土和植被相互作用的重要纽带。冻土的冻融状态, 土壤的水、 热过程对高寒植被的生长有着密切的影响; 同时位于冻土上层的植被, 又通过植被特征和生态系统的变化, 影响土壤温度、 湿度, 反作用于冻土的形成和发展。冻土和高寒植被作为三江源两种典型的下垫面, 在陆-气相互作用中是一个有机整体, 其变化将通过影响局地能量分配及水分过程对区域降水、 气温、 能量收支、 局地环流以及水汽循环等产生重要的影响, 需要统筹考虑二者协同变化的气候效应。未来面向整个区域的冻土-植被相互作用的综合评估及机理分析需进一步加强。利用观测、 耦合了动态植被模型的陆面过程模式、 区域气候模式以及人工智能等, 深入开展研究三江源区冻土冻融变化与高寒植被变化的内在联系, 将进一步提高对未来冻土及高寒植被变化的认识, 为三江源生态保护和建设提供重要科学依据。

本文引用格式

罗斯琼 , 李红梅 , 马迪 , 李文静 , 王景元 , 谭晓晴 , 董晴雪 . 三江源冻土-植被相互作用及气候效应研究现状及展望[J]. 高原气象, 2022 , 41(2) : 255 -267 . DOI: 10.7522/j.issn.1000-0534.2021.00098

参考文献

null
Bry? K Bry? T Sayegh M A al et2020.Characteristics of heat fluxes in subsurface shallow depth soil layer as a renewable thermal source for ground coupled heat pumps[J].Renewable Energy, 146: 1846-1866.DOI: 10.1016/j.renene.2019.07.101 .
null
Chang X L Jin H J Wang Y P al et2012.Influences of vegetation on permafrost: a review[J].Acta Ecologica Sinica, 32: 7981-7990.DOI: 10.5846/stxb201202120181 .
null
Chang Y Lyu S H Luo S Q al et2018.Estimation of permafrost on the Tibetan Plateau under current and future climate conditions using the CMIP5 data[J].International Journal of Climatology, 38: 5659-5676.DOI: 10.1002/joc.5770 .
null
Chen B L Luo S Q Lu S H al et2014.Effects of the soil freeze-thaw process on the regional climate of the Qinghai-Tibet Plateau[J].Climate Research, 59: 243-257, DOI: 10.3354/cr01217 .
null
Chen G S Notaro M Liu Z Y al et2012.Simulated Local and Remote Biophysical Effects of Afforestation over the Southeast United States in Boreal Summer[J].Journal of Climate25(13): 4511-4522.DOI: 10.1175/JCLI-D-11-00317.1 .
null
Dai Y J Xin Q C Wei N al et2019.A global high-resolution data set of soil hydraulic and thermal properties for land surface modeling[J].Journal of Advances in Modeling Earth Systems11(9): 2996-3023.DOI: 10.1029/2019ms001784 .
null
Douglas T A Turetsky M R Koven C D2020.Increased rainfall stimulates permafrost thaw across a variety of Interior Alaskan boreal ecosystems[J].Climate and Atmospheric Science3(1).DOI: 10.1038/s41612-020-0130-4 .
null
Fang X W Luo S Q Lyu S H2019.Observed soil temperature trends associated with climate change in the Tibetan Plateau, 1960-2014.[J] Theoretical & Applied Climatology, 135(1): 169-181.DOI: 10.1007/s00704-017-2337-9 .
null
Fisher J P Estop-Aragones C Thierry A al et2016.The influence of vegetation and soil characteristics on active-layer thickness of permafrost soils in boreal forest[J].Global Change Biology22(9): 3127-3140.DOI: 10.1111/gcb.13248 .
null
Gao J Q Xie Z H Wang A W al et2019.A new frozen soil parameterization including frost and thaw fronts in the community land model[J].Journal of Advances in Modeling Earth Systems11(3): 659-679.DOI: 10.1029/2018ms001399 .
null
Guo D L Wang H J2014.Simulated change in the near-surface soil freeze/thaw cycle on the Tibetan Plateau from 1981 to 2010[J].Chinese Science Bulletn59(20): 2439-2448.DOI: 10.1007/s11434-014-0347-x .
null
Huang C C Zheng X G Tait A al et2014.On using smoothing spline and residual correction to fuse rain gauge observations and remote sensing data[J].Journal of Hydeology, 508: 410-417.DOI: 10.1016/j.jhydrol.2013.11.022 .
null
Iijima Y Fedorov A N Park H al et2010.Abrupt increases in soil temperatures following increased precipitation in a permafrost region, central Lena River basin, Russia[J].Permafrost and Periglacial Processes21(1): 30-41.DOI: 10.1002/ppp.662 .
null
Jin H J He R X Cheng G D al et2009.Changes in frozen ground in the source area of the Yellow River on the Qinghai-Tibet Plateau, China, and their eco-environmental impacts[J].Environmental Research Letters4(4): 045206.DOI: 10.1088/1748-9326/4/4/045206 .
null
Jin H J Wang S L Lv S H al et2010.Features and degradation of frozen ground in the sources area of the Yellow River, China[J].Journal of Glaciology Geocryology32(1): 10-17.DOI: 10.1021/ic100140j .
null
Lawrence D M Swenson S C2011.Permafrost response to increasing Arctic shrub abundance depends on the relative influence of shrubs on local soil cooling versus large-scale climate warming[J].Environmental Research Letters6(4): 045504.DOI: 10. 1088/1748-9326/6/4/045504 .
null
Li R Zhao L Ding Y J al et2012.Temporal and spatial variations of the active layer along the Qinghai-Tibet Highway in a permafrost region[J].Chinese Science Bulletin57(35): 4609-4616.DOI: 10.1007/s11434-012-5323-8 .
null
Liang L Q Li L J Liu C M al et2013.Climate change in the Tibetan Plateau Three Rivers Source Region: 1960-2009[J].International Journal of Climatology33(13): 2900-2916.DOI: 10. 1002/joc.3642 .
null
Liu G S Wang G X Hong-Chang H U al et2009.Influence of vegetation coverage on water and heat processes of the active layer in permafrost regions of the Tibetan Plateau[J].Journal of Glaciology and Geocryology31(1): 89-95.DOI: 10.1016/S1003-6326(09)60084-4 .
null
Liu Y Q Stanturf J Lu H Q2008.Modeling the potential of the Northern China forest shelterbelt in improving hydroclimate conditions[J].Journal of the American Water Resources Association44(5): 1176-1192.DOI: 10.1111/j.1752-1688.2008.00240.x .
null
Lu Y Williams I N Bagley J E al et2017.Representing winter wheat in the Community Land Model (version4.5)[J].Geoscientific Model Development10(5): 1873-1888.DOI: 10.5194/gmd-10-1873-2017 .
null
Luo D L Jin H J He R X al et2018a.Characteristics of water-heat exchanges and inconsistent surface temperature changes at an elevational permafrost site on the Qinghai-Tibet Plateau[J].Journal of Geophysical Research: Atmospheres123(8): 10057-10075.DOI: 10.1029/2018jd028298 .
null
Luo S Q Chen B L Lyu S H al et2018b.An improvement of soil temperature simulations on the Tibetan Plateau[J].Sciences in Cold and Arid Regions10(1): 80-94.DOI: 10.3724/sp.j. 1226.2018.00080 .
null
Luo S Q Fang X W Lyu S H al et2016.Frozen ground temperature trends associated with climate change in the Tibetan Plateau Three River Source Region from 1980 to 2014[J].Climate Research67(3): 241-255.DOI: 10.3354/cr01371 .
null
Luo S Q Fang X W Lyu S H al et2017a.Improving CLM4.5 simulations of land-atmosphere exchanges during freeze-thaw processes on the Tibetan Plateau[J].Journal of Meteorological Research31(5): 916-930.DOI: 10.1007/s13351-017-6063-0 .
null
Luo S Q Fang X W S H al et2017b.Interdecadal changes in the freeze depth and period of frozen soil on the Three Rivers Source Region in China from 1960 to 2014[J].Advances in Meteorology2017(5): 1-14.DOI: 10.1155/2017/5931467 .
null
Luo S Q Lyu S H Zhang Y2009.Development and validation of the frozen soil parameterization scheme in Common Land Model[J].Cold Regions Science and Technology55(1): 130-140.DOI: /10.1016/j.coldregions.2008.07.009 .
null
Luo S Q Wang J Y Pomeroy J W al et2020.Freeze-thaw changes of seasonally frozen ground on the Tibetan Plateau from 1960 to 2014[J].Journal of Climate33 (21): 9427-9446.DOI: 10. 1175/JCLI-D-19-0923.1 .
null
Ma D Liu Z Y Lu S H al et2013a.Short-term climatic impacts of afforestation in the East Asian monsoon region[J].Chinese Science Bulletin58(17): 2073-2081.DOI: 10.1007/s11434-012-5661-6 .
null
Ma D Luo S Q Guo D L al et2021.Simulated effect of soil freeze-thaw process on surface hydrologic and thermal fluxes in frozen ground region of the Northern Hemisphere[J].Sciences in Cold and Arid Regions13(1).18-29.DOI: 10.3724/SP.J.1226.2021.20059 .
null
Ma D Notaro M Liu Z Y al et2013b.Simulated impacts of afforestation in East China monsoon region as modulated by ocean variability[J].Climate Dynamics41(9-10): 2439-2450.DOI: 10.1007/s00382-012-1592-9 .
null
Meng X H Li R Luan L al et2017.Detecting hydrological consistency between soil moisture and precipitation and changes of soil moisture in summer over the Tibetan Plateau[J].Climate Dynam51(2): 1-12.DOI: 10.1007/s00382-017-3646-5 .
null
Mu C C Wu X D Zhao Q al et2017.Relict mountain permafrost area (Loess Plateau, China) exhibits high ecosystem respiration rates and accelerating rates in response to warming[J].Journal of Geophysical Research: Biogeosciences122(10): 2580-2592.DOI: 10.1002/2017jg004060 .
null
Neumann R B Moorberg C J Lundquist J D al et2019.Warming effects of spring rainfall increase methane emissions from thawing permafrost[J].Geophysical Research Letters46(3): 1393-1401.DOI: 10.1029/2018gl081274 .
null
Ni J Wu T H Zhu X F al et2021.Simulation of the present and future projection of permafrost on the Qinghai-Tibet Plateau with statistical and machine learning models[J].Journal of Geophysical Research: Atmospheres126(2): 0-20.DOI: 10.1029/2020JD033402 .
null
Pearson R G Phillips S J Loranty M M al et2013.Shifts in Arctic vegetation and associated feedbacks under climate change[J].Nature Climate Change3(7): 673-677.DOI: 10.1038/nclimate1858 .
null
Piao S L Friedlingstein P Ciais P al et2007.Growing season extension and its impact on terrestrial carbon cycle in the Northern Hemisphere over the past 2 decades[J].Global Biogeochemical Cycles, 21(3): n/a-n/a.DOI: 10.1029/2006gb002888 .
null
Poutou E Krinner G Genthon C al et2004.Role of soil freezing in future boreal climate change[J].Climate Dynamics23(6): 621-639.DOI: 10.1007/s00382-004-0459-0 .
null
Qin Y Yang D W Gao B al et2017.Impacts of climate warming on the frozen ground and eco-hydrology in the Yellow River source region, China[J].Science of The Total Environment605-606: 830-841.DOI: 10.1016/j.scitotenv.2017.06.188 .
null
Ran Y H Li X Cheng G D2018.Climate warming over the past half century has led to thermal degradation of permafrost on the Qinghai-Tibet Plateau[J].The Cryosphere12(2): 595-608.DOI: 10.5194/tc-12-595-2018 .
null
Richardson A D Keenan T F Migliavacca M al et2013.Climate change, phenology, and phenological control of vegetation feedbacks to the climate system[J].Agricultural and Forest Meteorology, 169: 156-173.DOI: 10.1016/j.agrformet.2012.09.012 .
null
Rodell M Famiglietti J S Wiese D N al et2018.Emerging trends in global freshwater availability[J].Nature557(7707): 651-659.DOI: 10.1038/s41586-018-0123-1 .
null
Shen M G Piao S L Jeong S-J al et2015.Evaporative cooling over the Tibetan Plateau induced by vegetation growth[J].Proceedings of the National Academy of Sciences112(30): 9299-9304.DOI: 10.1073/pnas.1504418112 .
null
Shrestha P Kurtz W Vogel G al et2018.Connection between root zone soil moisture and surface energy flux partitioning using modeling, observations, and data assimilation for a temperate grassland site in Germany[J].Journal of Geophysical Research Biogeosciences123(9): 2839-2862.DOI: 10.1029/2016JG003753 .
null
Swann A L Fung I Y Levis S al et2010.Changes in Arctic vegetation amplify high-latitude warming through the greenhouse effect[J].Proceedings of the National Academy of Sciences107(4): 1295-1300.DOI: 10.1073/pnas.0913846107 .
null
Tarnocai C Canadell J G Schuur E A G al et2009.Soil organic carbon pools in the northern circumpolar permafrost region[J].Global Biogeochemical Cycles, 23, GB2023, DOI: 10.1029/2008GB003327 .
null
Trenberth K E Fasullo J T Kiehl J2009.Earth's global energy budget[J].Bulletin of the American Meteorological Society, 90: 311-324.DOI: 10.1175/2008bams2634.1 .
null
Viterbo P Beljaars A Mahfouf J F al et1999.The representation of soil moisture freezing and its impact on the stable boundary layer[J].Quarterly Journal of the Royal Meteorological Society, 125: 2401-2426.DOI: 10.1002/qj.49712555904 .
null
Wang G X Bai W Li N al et2010.Climate changes and its impact on tundra ecosystem in Qinghai-Tibet Plateau, China[J].Climatic change, 106: 463-482.DOI: 10.1007/s10584-010-9952-0 .
null
Wang T H Yang D W Fang B J al et2019.Data-driven mapping of the spatial distribution and potential changes of frozen ground over the Tibetan Plateau[J].Science of the Total Environment, 649: 515-525.DOI: 10.1016/j.scitotenv.2018.08.369 .
null
Wei N Cui E Q Huang K al et2019.Decadal stabilization of soil inorganic nitrogen as a benchmark for global land models[J].Journal of Advances in Modeling Earth Systems, 11: 1088-1099.DOI: 10.1029/2019ms001633 .
null
Xue X Guo J Han B S al et2009.The effect of climate warming and permafrost thaw on desertification in the Qinghai-Tibetan Plateau[J].Geomorphology, 108: 182-190.DOI: 10.1016/j.geomorph.2009.01.004 .
null
Yang K Wang C H2019.Water storage effect of soil freeze-thaw process and its impacts on soil hydro-thermal regime variations[J].Agricultural and Forest Meteorology, 265: 280-294.DOI: 10.1016/j.agrformet.2018.11.011
null
Zhang L Guo H D Wang C Z al et2014.The long-term trends (1982-2006) in vegetation greenness of the alpine ecosystem in the Qinghai-Tibetan Plateau[J].Environmental Earth Sciences, 2014, 72: 1827-1841.DOI: 10.1007/s12665-014-3092-1 .
null
Zou D F Zhao L Sheng Y al et2017.A new map of permafrost distribution on the Tibetan Plateau[J].The Cryosphere11(6): 2527-2542.DOI: 10.5194/tc-11-2527-2017 .
null
陈渤黎, 罗斯琼, 吕世华, 等, 2017.基于CLM模式的青藏高原土壤冻融过程陆面特征研究[J].冰川冻土39(4): 760-770.DOI: 10.7522/j.issn.1000-0240.2017.0086 .
null
程国栋, 1984.我国高海拔多年冻土地带性规律之探讨[J].地理学报39(2): 185-193.DOI: 10.11821/xb198402006 .
null
程国栋, 赵林, 李韧, 等, 2019.青藏高原多年冻土特征、 变化及影响[J].科学通报64(27): 2783-2795.DOI: 10.1360/TB-2019-0191 .
null
丁明军, 张镱锂, 孙晓敏, 等, 2012.近10年青藏高原高寒草地物候时空变化特征分析[J].科学通报57(33): 3185-3194.DOI: 10.1007/s11434-012-5407-5 .
null
董晴雪, 罗斯琼, 文小航, 等, 2022.近60年来藏东南降水变化及其对土壤温度与冻融过程的影响[J].高原气象41(2): 404-419.DOI: 10.7522/j.issn.1000 0534.2021.00065 .
null
冯松, 汤懋苍, 王冬梅, 1998.青藏高原是我国气候变化启动区的新证据[J].科学通报43(6): 633-636.DOI: 10.1360/csb1998-43-6-633 .
null
冯晓玙, 黄斌斌, 李若男, 等, 2020.三江源区生态系统和土壤保持服务对未来气候变化的响应特征[J].生态学报40(18): 6351-6361.DOI: 10.5846/stxb201903300617 .
null
高荣, 韦志刚, 钟海玲, 2017.青藏高原陆表特征与中国夏季降水的关系研究[J].冰川冻土39(4): 741-747.DOI: 10.7522 /j.issn.1000-0240.2017.0084 .
null
耿晓平, 李红梅, 申正涛, 等, 2019.三江源区气候变化及其对草地植被的影响分析[J].青海科技26(4): 83-87.
null
管琪卉, 丁明军, 张华敏, 2019.青藏地区高寒草地春季物候时空变化及其对气候变化的响应[J].山地学报37(5): 639-648.DOI: 10.16089/j.cnki.1008-2786.000455 .
null
韩炳宏, 周秉荣, 赵恒和, 等, 2019.三江源区草地植被返青及其与气候因子的关系[J].生态学报39(15): 5635-5641.DOI: 10.5846/stxb201808091691 .
null
韩炳宏, 周秉荣, 赵恒和, 等, 2020.三江源区草地植被时空变化及其影响因子分析[J].中国草地学报42(3): 77-85.DOI: 10.16742/j.zgcdxb.20190233 .
null
韩有香, 刘彩红, 李国山, 2019.青海高原典型生态区域未来气候变化趋势预估[J].草业科学36(6): 1518-1530.DOI: 10. 11829/j.issn.1001-0629.2018-0483 .
null
黄文洁, 2019.青藏高原高寒草地植被物候及其对气候变化的响应[D].兰州: 兰州大学, 1-67.
null
金会军, 王绍令, 吕兰芝, 等, 2010.黄河源区冻土特征及退化趋势[J].冰川冻土32(1): 10-17.DOI: 1000-0240(2010)01-0010-08 .
null
井梅秀, 蔡福, 王学江, 等, 2020.三江源区植被覆盖度空间特征[J].干旱区资源与环境34(2): 141-147.DOI: 10.13448/j.cnki.jalre.2020.48 .
null
李辉霞, 刘国华, 傅伯杰, 2011.基于NDVI的三江源地区植被生长对气候变化和人类活动的响应研究[J].生态学报31(19): 5495-5504.DOI: http: //www.ir.rcees.ac.cn/handle/311016/5473 .
null
李林, 王振宇, 徐维新, 等, 2010.青藏高原典型高寒草甸生态系统对气候冻土环境变化的响应[J].青海气象, (1): 15-22.DOI: CNKI: SUN: QHQX.0.2010-01-004 .
null
李强, 2016.近12a三江源地区植被物候对水热的响应[J].干旱区研究33(1): 150-158.DOI: 10.13866/j.azr.2016.01.19 .
null
李英年, 沈振西, 周华坤, 2001.寒冻雏形土不同地形部位土壤湿度及其与主要植被类型的对应关系[J].山地学报19 (3): 220-225.DOI: 1008-2786(2001)03-0220-06 .
null
李英年, 王勤学, 古松, 等, 2004.高寒植被类型及其植物生产力的监测[J].地理学报59(1): 40-48.DOI: 10.3321/j.issn: 0375-5444.2004.01.005 .
null
刘彩红, 余锦华, 李红梅, 2015.RCPs情景下未来青海高原气候变化趋势预估[J].中国沙漠35(5): 1353-1361.DOI: 10.7522/j.issn.1000-694X.2014.00138 .
null
刘纪远, 徐新良, 邵全琴, 2008.近30年来青海三江源地区草地退化的时空特征[J].地理学报63(4): 364-376.DOI: 10.3969/j.issn.1009-637X.2008.03.001 .
null
刘世梁, 孙永秀, 2021.基于多源数据的三江源区生态工程建设前后草地动态变化及驱动因素研究[J].生态学报41(10): 3865-3877.DOI: 10.5846/stxb2020006301699
null
刘亚, 2017.基于MODIS植被指数的三江源植被物候变化及其对气候变化的响应[D].南昌: 华东理工大学, 1-64.
null
陆子建, 吴青柏, 盛煜, 等, 2006.青藏高原北麓河附近不同地表覆被下活动层的水热差异研究[J].冰川冻土28(5): 642-647.DOI: 10.3969/j.issn.1000-0240.2006.05.003 .
null
罗栋梁, 金会军, 何瑞霞, 等, 2014.黄河源区植被对活动层温度和水分的影响[J].地球科学(中国地质大学学报)39(4): 421-430.DOI: 10.3799/dqkx.2014.040 .
null
罗谨, 王军邦, 杨永胜, 等, 2021.1991—2015年三江源河曲高寒草甸干湿状况及牧草产量变化的气候归因研究[J].冰川冻土43(5): 1542-1550.
null
罗斯琼, 吕世华, 张宇, 等, 2009.青藏高原中部土壤热传导率参数化方案的确立及在数值模式中的应用[J].地球物理学报52(4): 919-928.DOI: 10.3969/j.issn.0001-5733.2009.04.008 .
null
罗勇, 秦大河, 翟盘茂, 等, 2020.方兴未艾的冰冻圈科学分支学科——冰冻圈气候学[J].中国科学院院刊35(4): 407-413.DOI: 10.16418/j.issn.1000-3045.20200330001 .
null
马迪, 刘征宇, 吕世华, 等, 2013.东亚季风区植被变化对局地气候的短期影响[J].科学通报58(17): 1661-1669.DOI: 10. 1007/s11434-012-5661-6 .
null
彭凯锋, 蒋卫国, 侯鹏, 等, 2020.三江源国家公园植被时空变化及其影响因子[J].生态学杂志39(10): 3388-3396.DOI: 10. 13292/j.1000-4890.202010.019 .
null
朴世龙, 张宪洲, 汪涛, 等, 2019.青藏高原生态系统对气候变化的响应及其反馈[J].科学通报64(27): 2842-2855.DOI: 10. 1360/TB-2019-0074 .
null
秦大河, 2014.三江源区生态保护与可持续发展[M].北京: 科学出版社, 240-249.
null
冉有华, 李新, 2019.中国多年冻土制图: 进展、 挑战与机遇[J].地球科学进展34(10): 1015-1027.DOI: 10.11867/j.issn.1001-8166.2019.10.1015 .
null
苏小艺, 陈克龙, 2019.2005~2015年三江源国家公园植被覆盖度动态变化研究[J].青海草业28(1): 20-23.
null
唐见, 曹慧群, 陈进, 2019.生态保护工程和气候变化对长江源区植被变化的影响量化[J].地理学报74(1): 76-86.DOI: 10. 11821/dlxb201901006 .
null
王澄海, 杨凯, 张飞民, 等, 2021.青藏高原土壤冻融过程的气候效应: 进展和展望[J].高原气象40(6): 1318-1336.DOI: 10. 7522/j.issn.1000-0534.2021.zk021 .
null
王根绪, 李元首, 吴青柏, 等, 2006.青藏高原冻土区冻土与植被的关系及其对高寒生态系统的影响[J].中国科学.D辑: 地球科学36(8): 743-754.DOI: 10.3321/j.issn: 1006-9267. 2006. 08.007 .
null
王根绪, 杨燕, 张光涛, 等, 2020.冰冻圈生态系统: 全球变化的前哨与屏障[J].中国科学院院刊35(4): 425-433.DOI: 10. 16418/j.issn.1000-3045.20200401002 .
null
王根绪, 宜树华, 2019.冰冻圈变化的生态过程与碳循环影响[M].北京: 科学出版社.
null
王绍令, 赵秀锋, 1997.青藏公路南段岛状冻土区内冻土环境变化[J].冰川冻土19(3): 231-238.
null
王欣, 晋锐, 杜培军, 等, 2018.青藏高原地表冻融循环与植被返青期的变化趋势及其气候响应特征[J].遥感学报22(3): 508-520.DOI: 10.11834/jrs.20187153 .
null
王志伟, 吴晓东, 岳广阳, 等, 2016.基于光谱反演的青藏高原1982年到2014年植被生长趋势分析[J].光谱学与光谱分析36(2): 471-477.DOI: 10.3964/j.issn.1000-0593(2016)02-0471-07 .
null
吴青柏, 沈永平, 施斌, 2003.青藏高原冻土及水热过程与寒区生态环境的关系[J].冰川冻土25(3): 250-255.
null
徐嘉昕, 房世波, 张廷斌, 等, 2020.2000—2016 年三江源区植被生长季NDVI变化及其对气候因子的响应[J].国土资源遥感32(1): 237-246.DOI: 10.6046 /gtzyyg.2020.01.32 .
null
姚檀栋, 秦大河, 沈永平, 等, 2013.青藏高原冰冻圈变化及其对区域水循环和生态条件的影响[J].自然杂志35(3): 179-182.DOI: 10.3969/j.issn.0253-9608.2013.03.004 .
null
游庆龙, 康世昌, 李潮流, 等, 2008.三江源地区1961~2005年气温极端事件变化[J].长江流域资源与环境17(2): 232-236.DOI: 10.3969/j.issn.1004-8227.2008.02.020 .
null
于秀娟, 燕琴, 刘正军, 等, 2013.三江源区植被覆盖度的定量估算与动态变化研究[J].长江流域资源与环境22(1): 66-74.DOI: CNKI: SUN: CJLY.0.2013-01-012 .
null
袁九毅, 闫水玉, 赵秀锋, 等, 1997.唐古拉山南麓多年冻土退化与蒿草草甸变化的关系[J].冰川冻土25(1): 47-56.
null
张丽, 王翠珍, 杨昊翔, 等, 2017.青藏高原地区物候数据集、 地表覆盖种类图和青海湖环湖地区草地生物量数据集[J/OL].中国科学数据, 2(2).DOI: 10.11922/csdata.170.2017.0132 .
null
张镱锂, 刘林山, 王兆锋, 等, 2019.青藏高原土地利用与覆被变化的时空特征[J].科学通报64(27): 2865-2875.DOI: 10.1360/TB-2019-0046 .
null
赵昶昱, 2017.欧亚陆地表层热含量的异常变化特征及其与东亚夏季风降水的可能联系[D].南京: 南京信息工程大学, 1-132.
null
赵亮, 李奇, 赵新全, 2020.三江源草地多功能性及其调控途径[J].资源科学42(1): 78-86.DOI: 10.18402/resci.2020.01.08 .
null
赵新全, 周华坤, 2005.三江源区生态环境退化、 恢复治理及其可持续发展[J].中国科学院院刊20(6): 37-42.DOI: 10.3969/j.issn.1000-3045.2005.06.008
null
周亚, 高晓清, 李振朝, 等, 2017.青藏高原深层土壤热通量的变化特征分析[J].高原气象36(2): 307-316.DOI: 10.7522 / j.issn.1000-0534.2016.00120.
null
朱宁, 常伟纲, 贾小凤, 等, 2020.三江源草地覆盖度时空变化及对气候的响应[J].北京测绘34(4): 495-500.DOI: 10.19580/j.cnki.1007-3000.2020.04.012 .
null
朱文会, 毛飞, 徐影, 等, 2019.三江源区植被指数对气候变化的响应及预测分析[J].高原气象38(4): 693-704.DOI: 10.7522/j.issn.1000-0534.2018.00105 .
null
朱宇蓉, 徐开宇, 付永超, 等, 2018.三江源地区1961~2017年冻土变化特征及影响[J].青海科技25(6): 73-76.
文章导航

/