综述

基于机器学习的土壤温度预估研究综述

  • 谭晓晴 ,
  • 罗斯琼 ,
  • 舒乐乐 ,
  • 李晓旭 ,
  • 王景元 ,
  • 曾礼 ,
  • 董晴雪 ,
  • 陈自航
展开
  • 1. 中国科学院西北生态环境资源研究院 寒旱区陆面过程与气候变化重点实验室,甘肃 兰州 730000
    2. 中国科学院大学,北京 100049
    3. 兰州理工大学计算机与通信学院,甘肃 兰州 730050
    4. 成都信息工程大学大气科学学院 高原大气与环境四川省重点实验室,四川 成都 610225

谭晓晴(1996 -), 女, 广东韶关人, 硕士研究生, 主要从事陆面过程与气候变化研究. E-mail:

收稿日期: 2021-08-18

  修回日期: 2022-03-10

  网络出版日期: 2022-04-20

基金资助

国家自然科学基金项目(41975096); 第二次青藏高原综合科学考察研究项目(2019QZKK0105); 中国科学院“西部之光”交叉团队项目(xbzg-zdsys-202102)

A Review of Soil Temperature Estimation Research Based on Machine Learning

  • Xiaoqing TAN ,
  • Siqiong LUO ,
  • Lele SHU ,
  • Xiaoxu LI ,
  • Jingyuan WANG ,
  • Li ZENG ,
  • Qingxue DONG ,
  • Zihang CHEN
Expand
  • 1. Northwest Institute of Ecological Environment and Resources,Chinese Academy of Sciences / Key Laboratory of Land Surface Process and Climate Change in the Cold and Arid Region of the Chinese Academy of Sciences,Lanzhou 730000,Gansu,China
    2. University of Chinese Academy of Sciences,Beijing 100049,China
    3. School of Computer and Communication,Lanzhou University of Technology,Lanzhou 730050,Gansu,China
    4. College of Atmospheric Sciences,Chengdu University of Information Technology / Sichuan Key Laboratory of Plateau Atmosphere and Environment,Chengdu 610225,Sichuan,China

Received date: 2021-08-18

  Revised date: 2022-03-10

  Online published: 2022-04-20

本文引用格式

谭晓晴 , 罗斯琼 , 舒乐乐 , 李晓旭 , 王景元 , 曾礼 , 董晴雪 , 陈自航 . 基于机器学习的土壤温度预估研究综述[J]. 高原气象, 2022 , 41(2) : 268 -281 . DOI: 10.7522/j.issn.1000-0534.2022.00024

参考文献

null
Aalto J Karjalainen O Hjort J al et2018.Statistical forecasting of current and future circum-arctic ground temperatures and active layer thickness[J].Geophysical Research Letters45(10): 4889-4898.DOI: 10.1029/2018gl078007 .
null
Al-Anazi A F Gates I D2012.Support vector regression to predict porosity and permeability: Effect of sample size[J].Computers & Geosciences, 39: 64-76.DOI: 10.1016/j.cageo.2011.06.011 .
null
Alizamir M Kisi O Ahmed A N al et2020.Advanced machine learning model for better prediction accuracy of soil temperature at different depths[J].PLoS One15(4): e0231055.DOI: 10. 1371/journal.pone.0231055 .
null
Bilgili M2010.Prediction of soil temperature using regression and artificial neural network models[J].Meteorology and Atmospheric Physics110(1/2): 59-70.DOI: 10.1007/s00703-010-0104-x .
null
Breiman L2001.Random forests[J].Machine Learning45(1): 5-32.DOI: 10.1023/A: 1010933404324 .
null
Brooks P D McKnight D Elder K2005.Carbon limitation of soil respiration under winter snowpacks: Potential feedbacks between growing season and winter carbon fluxes[J].Global Change Biology11(2): 231-238.DOI: 10.1111/j.1365-2486.2004. 00877.x .
null
Chen B F Wang H D Chu C C2007.Wavelet and artificial neural network analyses of tide forecasting and supplement of tides around Taiwan and South China Sea[J].Ocean Engineering34(16): 2161-2175.DOI: 10.1016/j.oceaneng.2007.04.003 .
null
Cherkassky V Mulier F M2007.Learning from data: Concepts, theory, and methods[M].John Wiley & Sons.
null
Citakoglu H2016.Comparison of artificial intelligence techniques for prediction of soil temperatures in Turkey[J].Theoretical and Applied Climatology130(1/2): 545-556.DOI: 10.1007/s00704-016-1914-7 .
null
Delbari M Sharifazari S Mohammadi E2018.Modeling daily soil temperature over diverse climate conditions in Iran—a comparison of multiple linear regression and support vector regression techniques[J].Theoretical and Applied Climatology135(3/4): 991-1001.DOI: 10.1007/s00704-018-2370-3 .
null
Deluigi N Lambiel C2013.PERMAL: A machine learning approach for alpine permafrost distribution modeling[M].Eidg.Forschungsanstalt WSL.
null
Deluigi N Lambiel C Kanevski M2017.Data-driven mapping of the potential mountain permafrost distribution[J].Science of The Total Environment, 590: 370-380.DOI: 10.1016/j.scitotenv. 2017.02.041 .
null
Ding J Tarokh V Yang Y2018.Model selection techniques: An overview[J].IEEE Signal Processing Magazine35(6): 16-34.DOI: 10.1109/MSP.2018.2867638 .
null
Elith J Leathwick J R Hastie T2008.A working guide to boosted regression trees[J].Journal of Animal Ecology77(4): 802-813.DOI: 10.1111/j.1365-2656.2008.01390.x .
null
Fang X W Luo S Q Lyu S H al et2021.Numerical modeling of the responses of soil temperature and soil moisture to climate change over the Tibetan Plateau, 1961-2010[J].International Journal of Climatology, 41(8): 4134-4150.DOI: 10.1002/joc.7062 .
null
Feng Y Cui N B Hao W P al et2019.Estimation of soil temperature from meteorological data using different machine learning models[J].Geoderma, 338: 67-77.DOI: 10.1016/j.geoderma.2018.11.044 .
null
Friedman J H2001.Greedy function approximation: a gradient boosting machine[J].Annals of Statistics, 1189-1232.DOI: 10.1214/aos/1013203451 .
null
Gao S R Wu Q B Zhang Z Q al et2020.Simulating active layer temperature based on weather factors on the Qinghai-Tibetan Plateau using ANN and wavelet-ANN models[J].Cold Regions Science and Technology, 177.DOI: 10.1016/j.coldregions.2020. 103118 .
null
García D H2021.Analysis and precision of the terrestrial surface temperature using Landsat 8 and Sentinel 3 images: Study applied to the city of Granada (Spain)[J].Sustainable Cities and Society, 71.DOI: 10.1016/j.scs.2021.102980 .
null
Gharabaghi B Safadoust A Mahboubi A A al et2015.Temperature effect on the transport of bromide and E.coli NAR in saturated soils[J].Journal of Hydrology, 522: 418-427.DOI: 10.1016/j.jhydrol.2015.01.003 .
null
Gu J X Wang Z H Kuen J al et2018.Recent advances in convolutional neural networks[J].Pattern Recognition, 77: 354-377.DOI: 10.1016/j.patcog.2017.10.013 .
null
Gunn S R1998.Support vector machines for classification and regression[J].ISIS Technical Report14(1): 5-16.DOI: 10.1201/b10911-3 .
null
Hao H B W Yu F H Li Q L al et2020.Soil temperature prediction using convolutional neural network based on ensemble empirical mode decomposition[J].IEEE Access, 9: 4084-4096.DOI: 10.1109/ACCESS.2020.3048028 .
null
Hastie T J2017.Generalized additive models[M].Routledge.
null
Heddam S2018.Development of air-soil temperature model using computational intelligence paradigms: Artificial neural network versus multiple linear regression[J].Modeling Earth Systems and Environment5(3): 747-751.DOI: 10.1007/s40808-018-0565-3 .
null
Hochreiter S Schmidhuber J1997.Long short-term memory[J].Neural Computation9(8): 1735-1780.DOI: 10.1162/neco. 1997.9.8.1735 .
null
Hu J M Wang J Z Zeng G W2013.A hybrid forecasting approach applied to wind speed time series[J].Renewable Energy, 60: 185-194.DOI: 10.1016/j.renene.2013.05.012 .
null
Huang G B Zhu Q Y Siew C K al et2004.Extreme learning machine: A new learning scheme of feedforward neural networks[C].2004 IEEE international joint conference on neural networks (IEEE Cat.No.04CH37541).IEEE, 2: 985-990.DOI: 10. 1109/ijcnn.2004.1380068 .
null
Huang N E Shen Z Long S R al et1998.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J].Proceedings of the Royal Society of London.Series A: Mathematical, physical and engineering sciences, 454(1971): 903-995.DOI: 10.1098/rspa.1998.0193 .
null
Huang R Huang J X Zhang C al et2020.Soil temperature estimation at different depths, using remotely-sensed data[J].Journal of Integrative Agriculture19(1): 277-290.DOI: 10.1016/s2095-3119(19)62657-2 .
null
Hutengs C Vohland M2016.Downscaling land surface temperatures at regional scales with random forest regression[J].Remote Sensing of Environment, 178: 127-141.DOI: 10.1016/j.rse.2016. 03.006 .
null
Jahanfar A Drake J Sleep B al et2018.A modified FAO evapotranspiration model for refined water budget analysis for Green Roof systems[J].Ecological Engineering, 119: 45-53.DOI: 10.1016/j.ecoleng.2018.04.021 .
null
Jeong S Park I Kim H S al et2021.Temperature prediction based on bidirectional long short-term memory and convolutional neural network combining observed and numerical forecast data[J].Sensors (Basel)21(3).DOI: 10.3390/s21030941 .
null
Kang S Kim S Oh S al et2000.Predicting spatial and temporal patterns of soil temperature based on topography, surface cover and air temperature[J].Forest Ecology and Management136(1/3): 173-184.DOI: 10.1016/s0378-1127(99)00290-x .
null
Kim S Singh V P2014.Modeling daily soil temperature using data-driven models and spatial distribution[J].Theoretical and Applied Climatology118(3): 465-479.DOI: 10.1007/s00704-013-1065-z .
null
Kreuzer D Munz M Schlüter S2020.Short-term temperature forecasts using a convolutional neural network-An application to different weather stations in Germany[J].Machine Learning with Applications, 2.DOI: 10.1016/j.mlwa.2020.100007 .
null
Kumar A Islam T Sekimoto Y al et2020.Convcast: An embedded convolutional LSTM based architecture for precipitation nowcasting using satellite data[J].PLoS One15(3): e0230114.DOI: 10.1371/journal.pone.0230114 .
null
Lai L M Zhao X C Jiang L H al et2012.Soil respiration in different agricultural and natural ecosystems in an arid region[J].Plos One7(10): e48011.DOI: 10.1371/journal.pone.0048011 .
null
LeCun Y Bengio Y1995.Convolutional networks for images, speech, and time series[J].The Handbook of Brain Theory and Neural Networks3361(10): 1995
null
Li C Zhang Y N Ren X P2020a.Modeling Hourly Soil Temperature Using Deep BiLSTM Neural Network[J].Algorithms13(7).DOI: 10.3390/a13070173 .
null
Li Q L Hao H B W Zhao Y al et2020b.GANs-LSTM model for soil temperature estimation from meteorological: A new approach[J].IEEE Access, 8: 59427-59443.DOI: 10.1109/access. 2020.2982996 .
null
Li Q L Zhao Y Yu F H2020c.A novel multichannel long short-term memory method with time series for soil temperature modeling[J].IEEE Access, 8: 182026-182043.DOI: 10.1109/access.2020.3028995 .
null
Liu J Zhang T Gou Y al et2019.Convolutional LSTM networks for seawater temperature prediction[C].2019 IEEE International Conference on Signal, Information and Data Processing (ICSIDP).IEEE: 1- 53.DOI: 10.1109/icsidp47821.2019.9173301 .
null
Luo S Q Fang X W Lyu S H al et2016.Frozen ground temperature trends associated with climate change in the Tibetan Plateau Three River Source Region from 1980 to 2014[J].Climate Research67(3): 241-255.DOI: 10.3354/cr01371 .
null
Luo S Q Fang X W Lyu S H al et2017.Improving CLM4.5 simulations of land-atmosphere exchange during freeze-thaw processes on the Tibetan Plateau[J].Journal of Meteorological Research31(5): 916-930.DOI: 10.1007/s13351-017-6063-0 .
null
Mehdizadeh S Ahmadi F Sales A K2020.Modelling daily soil temperature at different depths via the classical and hybrid models[J].Meteorological Applications27(4).DOI: 10.1002/met. 1941 .
null
Meikle R W Treadway T R1979.A mathematical method for estimating soil temperatures[J].Soil Science128(4): 226-242.DOI: 10.1097/00010694-197910000-00006 .
null
Meikle R W Treadway T R1981.A mathematical method for estimating soil temperatures in Canada[J].Soil Science131(5): 320.DOI: 10.1097/00010694-198105000-00009 .
null
Miao Q H Pan B X Wang H al et2019.Improving monsoon precipitation prediction using combined convolutional and long short term memory neural network[J].Water11(5).DOI: 10.3390/w11050977 .
null
Mihalakakou G2002.On estimating soil surface temperature profiles[J].Energy and Buildings34(3): 251-259.DOI: 10.2136/sssaj1983.03615995004700010003x .
null
Mitchell T M1997.Does machine learning really work?[J].AI Magazine18(3): 11-11.DOI: 10.1609/aimag.v18i3.1303 .
null
Mjolsness E DeCoste D2001.Machine learning for science: state of the art and future prospects[J].Science293(5537): 2051-2055.DOI: 10.1126/science.293.5537.2051 .
null
Nahvi B Habibi J Mohammadi K al et2016.Using self-adaptive evolutionary algorithm to improve the performance of an extreme learning machine for estimating soil temperature[J].Computers and Electronics in Agriculture, 124: 150-160.DOI: 10.1016/j.compag.2016.03.025 .
null
Napolitano G Serinaldi F See L2011.Impact of EMD decomposition and random initialisation of weights in ANN hindcasting of daily stream flow series: An empirical examination[J].Journal of Hydrology406(3-4): 199-214.DOI: 10.1016/j.jhydrol. 2011.06.015 .
null
Nelder J A Wedderburn R W M1972.Generalized linear models[J].Journal of the Royal Statistical Society: Series A (General)135(3): 370-384.DOI: 10.2307/2344614 .
null
Ni J Wu T H Zhu X F al et2021.Simulation of the present and future projection of permafrost on the Qinghai‐Tibet Plateau with statistical and machine learning models[J].Journal of Geophysical Research: Atmospheres126(2).DOI: 10.1029/2020jd033402 .
null
Nourani V Alami M T Aminfar M H2009.A combined neural-wavelet model for prediction of Ligvanchai watershed precipitation[J].Engineering Applications of Artificial Intelligence22(3): 466-472.DOI: 10.1016/j.engappai.2008.09.003 .
null
Padarian J Minasny B McBratney A B2020.Machine learning and soil sciences: A review aided by machine learning tools[J].Soil6(1): 35-52.DOI: 10.5194/soil-6-35-2020 .
null
Paul K I Polglase P J Smethurst P J al et2004.Soil temperature under forests: A simple model for predicting soil temperature under a range of forest types[J].Agricultural and Forest Meteorology121(3-4): 167-182.DOI: 10.1016/j.agrformet.2003.08.030 .
null
Ran Y H Li X Cheng G D2018.Climate warming over the past half century has led to thermal degradation of permafrost on the Qinghai-Tibet Plateau[J].The Cryosphere12(2): 595-608.DOI: 10.5194/tc-12-595-2018 .
null
Ran Y H Li X Cheng G D al et2020.Mapping the permafrost stability on the Tibetan Plateau for 2005-2015[J].Science China Earth Sciences64(1): 62-79.DOI: 10.1007/s11430-020-9685-3 .
null
Reichstein M Camps-Valls G Stevens B al et2019.Deep learning and process understanding for data-driven Earth system science[J].Nature566(7743): 195-204.DOI: 10.1038/s41586-019-0912-1 .
null
Samadianfard S Asadi E Jarhan S al et2018a.Wavelet neural networks and gene expression programming models to predict short-term soil temperature at different depths[J].Soil and Tillage Research, 175: 37-50.DOI: 10.1016/j.still.2017.08.012 .
null
Samadianfard S Ghorbani M A Mohammadi B2018b.Forecasting soil temperature at multiple-depth with a hybrid artificial neural network model coupled-hybrid firefly optimizer algorithm[J].Information Processing in Agriculture5(4): 465-476.DOI: 10. 1016/j.inpa.2018.06.005 .
null
Sandri M Zuccolotto P2006.Variable selection using random forests[M].Data analysis, classification and the forward search.Springer: 263-270.[C]//Zani S,Cerioli A,Riani M,et al(eds),Data analysis,classification and the forward search.Berlin,Heidelberg:Springer,263-270.DOI:10.1007/3-540-35978-8_30.
null
Sang Y F Wang Z G Liu C M2012.Period identification in hydrologic time series using empirical mode decomposition and maximum entropy spectral analysis[J].Journal of Hydrology424-425: 154-164.DOI: 10.1016/j.jhydrol.2011.12.044 .
null
Schmidhuber J2015.Deep learning in neural networks: An overview[J].Neural networks, 61: 85-117.DOI: 10.1016/j.neunet. 2014.09.003 .
null
Shi X J Chen Z R Wang H al et2015.Convolutional LSTM network: A machine learning approach for precipitation nowcasting[C].Advances in neural information processing systems 28(NIPS 2015).Curran Associates,Inc,802-810.
null
Shi X J Gao Z H Lausen L al et2017.Deep learning for precipitation nowcasting: A benchmark and a new model[C].Advances in neural Information Processing Systems 30(NIPS 2017).Curran Associates,Inc.
null
Shi Y Y Niu F J Yang C S al et2018.Permafrost presence/absence mapping of the Qinghai-Tibet Plateau based on multi-source remote sensing data[J].Remote Sensing10(2).DOI: 10.3390/rs10020309 .
null
Tabari H Sabziparvar A A Ahmadi M2010.Comparison of artificial neural network and multivariate linear regression methods for estimation of daily soil temperature in an arid region[J].Meteorology and Atmospheric Physics110(3-4): 135-142.DOI: 10.1007/s00703-010-0110-z .
null
Tan J C NourEldeen N Mao K B al et2019.Deep learning convolutional neural network for the retrieval of land surface temperature from AMSR2 data in China[J].Sensors (Basel)19(13):2987.DOI: 10.3390/s19132987 .
null
Torrence C Compo G P1998.A practical guide to wavelet analysis[J].Bulletin of the American Meteorological society79(1): 61-78.DOI: 10.1175/1520-0477(1998)079<0061: APGTWA>2.0.CO; 2 .
null
Toy T J Kuhaida Jr A J Munson B E1978.The prediction of mean monthly soil temperature from mean monthly air temperature[J].Soil Science126(3): 181-189.DOI: 10.1097/00010694-197809000-00008 .
null
Vapnik V N1999.An overview of statistical learning theory[J].IEEE transactions on neural networks10(5): 988-999.DOI: 10.1109/72.788640 .
null
Wagle S Uttamani S Dsouza S al et2020.Predicting surface air temperature using convolutional long short-term memory networks[C].Iccce 2019.570: 183-188.DOI: 10.1007/978-981-13-8715-9_23 .
null
Wang S F Zhou J Lei T J al et2020a.Estimating land surface temperature from satellite passive microwave observations with the traditional neural network, deep belief network, and convolutional neural network[J].Remote Sensing12(17).DOI: 10.3390/rs12172691 .
null
Wang S F Zhou J Zhang X D al et2021.Estimating land surface temperature from AMSR-E and AMSR2 data with convolutional neural network[C].EGU General Assembly Conference Abstracts.EGU21-14126.DOI: 10.5194/egusphere-egu21-14126 .
null
Wang T H Yang D W Fang B J al et2019.Data-driven mapping of the spatial distribution and potential changes of frozen ground over the Tibetan Plateau[J].Sci Total Environ, 649: 515-525.DOI: 10.1016/j.scitotenv.2018.08.369 .
null
Wang T H Yang D W Yang Y T al et2020b.Permafrost thawing puts the frozen carbon at risk over the Tibetan Plateau[J].Science Advances6(19): eaaz3513.DOI: 10.1126/sciadv.aaz3513 .
null
Wang W C Chau K W Qiu L al et2015.Improving forecasting accuracy of medium and long-term runoff using artificial neural network based on EEMD decomposition[J].Environmental Research, 139: 46-54.DOI: 10.1016/j.envres.2015.02.002 .
null
Wei S K Yang H Song J X al et2013.A wavelet-neural network hybrid modelling approach for estimating and predicting river monthly flows[J].Hydrological Sciences Journal58(2): 374-389.DOI: 10.1080/02626667.2012.754102 .
null
Wu W Tang X P Guo N J al et2012.Spatiotemporal modeling of monthly soil temperature using artificial neural networks[J].The Oretical and Applied Climatology113(3/4): 481-494.DOI: 10.1007/s00704-012-0807-7 .
null
Wu Z H Huang N E2009.Ensemble empirical mode decomposition: a noise-assisted data analysis method[J].Advances in Adaptive Data Analysis1(1): 1-41.DOI: 10.1142/S1793536909000047 .
null
Xing L Li L H Gong J K al et2018.Daily soil temperatures predictions for various climates in United States using data-driven model[J].Energy, 160: 430-440.DOI: 10.1016/j.energy. 2018.07.004 .
null
Xu L Y Li Q Yu J al et2020.Spatio-temporal predictions of SST time series in China’s offshore waters using a regional convolution long short-term memory (RC-LSTM) network[J].International Journal of Remote Sensing41(9): 3368-3389.DOI: 10.1080/01431161.2019.1701724 .
null
Yang Y T Dong J Y Sun X al et2018.A CFCC-LSTM model for sea surface temperature prediction[J].IEEE Geoscience and Remote Sensing Letters15(2): 207-211.DOI: 10.1109/lgrs. 2017.2780843 .
null
Yuan Q Q Shen H F Li T W al et2020.Deep learning in environmental remote sensing: Achievements and challenges[J].Remote Sensing of Environment, 241.DOI: 10.1016/j.rse.2020. 111716 .
null
Zeynoddin M Bonakdari H Ebtehaj I al et2019.A reliable linear stochastic daily soil temperature forecast model[J].Soil and Tillage Research, 189: 73-87.DOI: 10.1016/j.still.2018.12.023 .
null
Zhang F P Dai H C Tang D S2014.A conjunction method of wavelet transform-particle swarm optimization-support vector machine for streamflow forecasting[J].Journal of Applied Mathematics, 2014: 1-10.DOI: 10.1155/2014/910196 .
null
Zhang K Geng X P Yan X H2020.Prediction of 3-D ocean temperature by multilayer convolutional LSTM[J].IEEE Geoscience and Remote Sensing Letters17(8): 1303-1307.DOI: 10.1109/lgrs.2019.2947170 .
null
Zhang L P Zhang L F Du B2016.Deep learning for remote sensing data: A technical tutorial on the state of the art[J].IEEE Geoscience and Remote Sensing Magazine4(2): 22-40.DOI: 10.1109/mgrs.2016.2540798 .
null
Zhang X K Zhang Q W Zhang G al et2018.A novel hybrid data-driven model for daily land surface temperature forecasting using long short-term memory neural network based on ensemble empirical mode decomposition[J].International Journal of Environmental Research and Public Health15(5).DOI: 10.3390/ijerph15051032 .
null
Zhang Z Dong Y2020.Temperature forecasting via convolutional recurrent neural networks based on time-series data[J].Complexity, 2020: 1-8.DOI: 10.1155/2020/3536572 .
null
陈海山, 孙照渤, 2002.陆气相互作用及陆面模式的研究进展[J].南京气象学院学报25(2): 277-288.DOI: 10.13878/j.cnki.dqkxxb.2002.02.021 .
null
崔素芳, 张振华, 姚付启, 等, 2010.基于偏相关分析的烟台市土壤温度影响因素及预测模型研究[J].山东农业科学, 1: 18-21.DOI: 10.14083/j.issn.1001-4942.2010.01.006 .
null
代成颖, 高志球, 王琳琳, 等, 2009.两种土壤温度算法的对比分析[J].大气科学33(1): 135-144.DOI: 10.3878/j.issn.1006-9895.2009.01.12 .
null
冯学民, 蔡德利, 2004.土壤温度与气温及纬度和海拔关系的研究[J].土壤学报41(3): 489-491.DOI: 10.3321/j.issn: 0564-3929.2004.03.027
null
韩博, 吕世华, 奥银焕, 2011.金塔绿洲土壤中蒸发/凝结过程的初步分析[J].高原气象30(6): 1462-1471
null
李新, 程国栋, 2002.冻土-气候关系模型评述[J].冰川冻土24(3): 315-321.
null
刘双, 谢正辉, 高骏强, 等, 2018.高寒生态脆弱区冻土碳水循环对气候变化的响应[J].高原气象37(5): 1177-1187.DOI: 10.7522/j.issn.1000-0534.2018.00016 .
null
冉有华, 李新, 2019.中国多年冻土制图: 进展、 挑战与机遇[J].地球科学进展34(10): 1015-1027.DOI: 10.11867/j.issn.1001-8166.2019.10.1015 .
null
孙菽芬, 2005.陆面过程的物理、 生化机理和参数化模型[M].北京: 气象出版社.
null
吴青柏, 沈永平, 施斌, 2003.青藏高原冻土及水热过程与寒区生态环境的关系[J].冰川冻土25(3): 250-255.
null
周锁铨, 张翠, 王小宁, 等, 2004.多层土壤温度模拟及其检验[J].南京气象学院学报27(2): 200-209.DOI: 10.13878/j.cnki.dqkxxb.2004.02.008 .
null
周志华, 2016.机器学习[M].北京: 清华大学出版社.
文章导航

/