null | Chen F, Dudhia J, 2001.Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system.PartI: Model implementation and sensitivity[J].Monthly Weather Review, 129(4), 569-585. |
null | Fairall C W, Bradley E F, Hare J E, al et, 2003.Bulk parameterization of air-sea fluxes: Updates and verification for the COARE algorithm[J].Journal of Climate, 16(4): 571-591. |
null | Gao L, Bernhardt M, Schulz K, al et, 2017.Elevation correction of ERA-interim temperature data in the Tibetan Plateau[J].International Journal of Climatology, 37(9), 3540-3552. |
null | Henderson G R, Peings Y, Furtado J C, al et, 2018.Snow-atmosphere coupling in the Northern Hemisphere [J].Nature Climate Change, 8(11): 954-963. |
null | Hong S Y, Noh Y, Dudhia J, 2005.A new vertical diffusion package with an explicit treatment of entrainment processes[J].Monthly Weather Review, 134(9): 2318. |
null | Jin J, Wen L, 2012.Evaluation of snowmelt simulation in the Weather Research and Forecasting model[J].Journal of Geophysical Research Atmospheres, 117(D10): 10110. |
null | Kain J S, 2004.The Kain-Fritsch convective parameterization: An update[J].Journal of Applied Meteorology, 43(1): 170-181. |
null | Krinner G, Derksen C, Essery R, al et, 2018.ESM-SnowMIP: Assessing models and quantifying snow-related climate feedbacks [J].Geoscientific Model Development Discussions.11(12): 5027-5049. |
null | Lei Y H, Letu H, Shang H Z, al et, 2020.Cloud cover over the Tibetan Plateau and eastern China: A comparison of ERA5 and ERA-Interim with satellite observations[J]. Climate Dynamic, 54(5): 2941-2957.DOI: 10.1007/s00382-020-05149-x . |
null | Li W, Guo W, Qiu B, al et, 2018.Influence of Tibetan Plateau snow cover on East Asian atmospheric circulation at medium-range time scales[J].Nature Communications, 9(1): 4243. |
null | Liu L, Ma Y, Menenti M, al et, 2019.Evaluation of WRF Modeling in Relation to Different Land Surface Schemes and Initial and Boundary Conditions: A Snow Event Simulation Over the Tibetan Plateau[J]. Journal of Geophysical Research: Atmospheres, 124(1): 209-226.DOI: 10.1029/2018JD029208 . |
null | Liu H, Gong P, Wang J, al et, 2020.Annual dynamics of global land cover and its long-term changes from 1982 to 2015[J].Earth System Science Data, 12(2): 1217-1243. |
null | Ou T H, Chen D L, Chen X C, al et, 2020.Simulation of summer precipitation diurnal cycles over the Tibetan Plateau at the gray-zone grid spacing for cumulus parameterization[J]. Climate Dynamics, 54(7): 3525- 3539.DOI: 10.1007/s00382-020-05181-x . |
null | Qin D H, Liu S Y, Li P J, 2006.Snow cover distribution, variability, and response to climate change in western China[J].Journal of Climate, 19(9): 1820-1833. |
null | Sahu R, Gupta R D, 2020.Snow cover area analysis and its relation with climate variability in Chandra basin, western Himalaya, during 2001-2017 using MODIS and ERA5 data [J]. Environmental Monitoring and Assessment, 192: 489.DOI: 10.1007/s10661-020-08442-8 . |
null | Wang Z, Wu R, Chen S, al et, 2018.Influence of western Tibetan Plateau summer snow cover on East Asian summer rainfall[J].Journal of Geophysical Research: Atmospheres, 123(5): 2371-2386. |
null | Wei Z, Dong W, 2015.Assessment of simulations of snow depth in the Qinghai-Tibetan Plateau using CMIP5 multi-models[J].Arctic, Antarctic, and Alpine Research, 47(4): 611-625. |
null | Yang Z L, Cai X, Gang Z, al et, 2011.The Community Noah Land Surface Model with multi-parameterization options (Noah-MP): Technical description[J].Journal of Geophysical Research: Atmospheres, 116(D12109): 1-19. |
null | Yang T, Li Q, Chen X, al et, 2021.Variation of snow mass in a regional climate model downscaling simulation covering the Tianshan Mountains, Central Asia[J].Journal of Geophysical Research: Atmospheres, 126(10): 1-21. |
null | Zhang Y, Li T, Wang B, 2004.Decadal change of the spring snow depth over the Tibetan Plateau: The associated circulation and influence on the East Asian summer monsoon[J].Journal of Climate, 17(14): 2780-2793. |
null | 车宗玺, 金铭, 张学龙, 等, 2008.祁连山不同植被类型对积雪消融的影响[J].冰川冻土, 30(3): 392-397. |
null | 陈烈庭, 2001.青藏高原异常雪盖和ENSO在1998年长江流域洪涝中的作用[J].大气科学, 25 (2): 184-192. |
null | 郝晓华, 王建, 车涛, 等, 2009.祁连山区冰沟流域积雪分布特征及其属性观测分析[J].冰川冻土, 31(2): 284-292. |
null | 何建军, 余晔, 刘娜, 等, 2014.复杂地形区陆面资料对WRF模式模拟性能的影响[J].大气科学, 38(3): 484-498. |
null | 胡汝骥, 2013.中国积雪与雪灾防治[M].北京: 中国环境出版社, 16-17. |
null | |
null | 李丹华, 2017.黄河源区雪面近地层微气象和水热交换特征研究[D].兰州: 兰州大学. |
null | |
null | |
null | |
null | 陆恒, 魏文寿, 刘明哲, 等, 2015.融雪期天山西部森林积雪表面能量平衡特征[J].山地学报, 33(2): 173-182. |
null | 秦大河, 2005.中国气候与环境演变(上卷)[M].北京: 科学出版社. |
null | 石英, 高学杰, 宋瑞艳, 等, 2010.全球变暖背景下中国区域不同强度降水事件变化的高分辨率数值模拟[J].气候变化研究进展, 6(3): 164-169. |
null | 史进纳, 蒋代华, 肖斌, 等, 2015.不同连栽代次桉树林土壤有机碳演变特征[J].热带作物学报, 36(4): 748-752. |
null | 王澄海, 王芝兰, 崔洋, 2009.40余年来中国地区季节性积雪的空间分布及年际变化特征[J].冰川冻土, 31(2): 301-310. |
null | 王芝兰, 王小平, 李耀辉, 2013.青藏高原积雪被动微波遥感资料与台站观测资料的对比分析[J].冰川冻土, 35(4): 783-792. |
null | |
null | 肖林, 车涛, 2015.青藏高原积雪对气候反馈的初步研究[J].遥感技术与应用, 30(6): 1066-1075. |
null | |
null | 张正, 肖鹏峰, 张学良, 等, 2019.青藏高原融雪期积雪反照率特性分析[J].遥感技术与应用, 34(6): 1146-1154. |