论文

春季地表云辐射效应与7月高原低涡之间的联系

  • 陈逸豪 ,
  • 范广洲
展开
  • 成都信息工程大学大气科学学院/高原大气与环境四川省重点实验室/气候与环境变化联合实验室,四川 成都 610225

陈逸豪(1997 -), 男, 四川成都人, 硕士研究生, 主要从事气候变化研究. E-mail:

收稿日期: 2021-04-25

  修回日期: 2021-07-15

  网络出版日期: 2022-11-03

基金资助

国家自然科学基金项目(42075081); 国家重点研发计划项目(2018YFC1505702); 第二次青藏高原综合科学考察研究项目(2019QZKK0102)

The Relationship between the Surface Cloud Radiative Effect in Spring and the Qinhai-Xizang Plateau Vortex in July

  • Yihao CHEN ,
  • Guangzhou FAN
Expand
  • School of Atmospheric Sciences/Plateau Atmosphere and Environment Key Laboratory of Sichuan Province/Joint Laboratory of Climate and Environment Change,Chengdu University of Information Technology,Chengdu 610225,Sichuan,China

Received date: 2021-04-25

  Revised date: 2021-07-15

  Online published: 2022-11-03

本文引用格式

陈逸豪 , 范广洲 . 春季地表云辐射效应与7月高原低涡之间的联系[J]. 高原气象, 2022 , 41(5) : 1266 -1280 . DOI: 10.7522/j.issn.1000-0534.2021.00061

参考文献

null
Bu Y P Fovell R G Corbosiero K L2017.The influences of boundary layer mixing and cloud-radiative forcing on tropical cyclone size[J].Journal of the Atmospheric Sciences74(4): 1273-1292.DOI: 10.1175/JAS-D-16-0231.1 .
null
Dell'osso L Chen S J1986.Numerical experiments on the genesis of vortices over the Qinghai-Tibet plateau[J].Tellus A38(3): 236-250.DOI: 10.1111/j.1600-0870.1986.tb00468.x .
null
Flohn H1957.Large-scale aspects of the “summer monsoon” in South and East Asia[J].Journal of the Meteorological Society of Japan.Ser.II, 35: 180-186.DOI: 10.2151/jmsj1923.35A.0_180 .
null
Fovell R G Corbosiero K L Seifert A, et al, 2010.Impact of cloud‐radiative processes on hurricane track[J].Geophysical Research Letters37(7).DOI: 10.1029/2010GL042691 .
null
Ge X Y Ma Y Zhou S W, et al, 2014.Impacts of the diurnal cycle of radiation on tropical cyclone intensification and structure[J].Advances in Atmospheric Sciences31(6): 1377-1385.DOI: 10.1007/s00376-014-4060-0 .
null
Hartmann D L Doelling D1991.On the net radiative effectiveness of clouds[J].Journal of Geophysical Research: Atmospheres96(D1): 869-891.DOI: 10.1029/90JD02065 .
null
Hong W Ren X J2013.Persistent heavy rainfall over South China during May-August: Subseasonal anomalies of circulation and sea surface temperature[J].Acta Meteorologica Sinica27(6): 769-787.DOI: 10.1007/s13351-013-06 .
null
Lau W K M Kim K M Zhao C, et al, 2020.Impact of dust-cloud-radiation-precipitation dynamical feedback on subseasonal-to-seasonal variability of the Asian summer monsoon in global variable-resolution simulations with MPAS-CAM5[J].Frontiers in Earth Science, 8: 226.DOI: 10.3389/feart.2020.00226 .
null
Li L Zhang R H Wen M2011.Diagnostic analysis of the evolution mechanism for a vortex over the Tibetan Plateau in June 2008[J].Advances in Atmospheric Sciences28(4): 797-808.DOI: 10. 1007/s00376-010-0027-y .
null
Liou K N2004.大气辐射导论 [M].郭彩丽, 周诗健, 译.2 版.北京: 气象出版社, 614.
null
Manabe S Terpstra T B1974.The effects of mountains on the general circulation of the atmosphere as identified by numerical experiments[J].Journal of the Atmospheric Sciences31(1): 3-42.DOI: 10.1175/1520-0469(1974)0312.0.CO; 2 .
null
Michio Y Li C F Song Z S1992.Seasonal heating of the Tibetan Plateau and its effects on the evolution of the Asian summer monsoon[J].Journal of the Meteorological Society of Japan.Ser.II70(1B): 319-351.DOI: 10.2151/jmsj1965.70.1B_319 .
null
Prasanna V Annamalai H2012.Moist dynamics of extended monsoon breaks over South Asia[J].Journal of Climate25(11): 3810-3831.DOI: 10.1175/JCLI-D-11-00459.1 .
null
Ramanathan V Cess R D Harrison E F, et al, 1989.Cloud-radiative forcing and climate: results from the Earth Radiation Budget Experiment[J].Science243(4887): 57-63.DOI: 10.1126/science.243.4887.57 .
null
Sch?fer S A K Voigt A2018.Radiation weakens idealized midlatitude cyclones[J].Geophysical Research Letters45(6): 2833-2841.DOI: 10.1002/2017GL076726 .
null
Shen R Reiter E R Bresch J F1986.Numerical simulation of the development of vortices over the Qinghai-Xizang (Tibet) Plateau[J].Meteorology and Atmospheric Physics35(1/2): 70-95.DOI: 10.1007/BF01029526 .
null
Tao W K Lang S Simpson J, et al, 1996.Mechanisms of cloud-radiation interaction in the tropics and midlatitudes[J].Journal of the Atmospheric Sciences53(18): 2624-2651.DOI: 10.1175/1520-0469(1996)053<2624: MOCRII>2.0.CO; 2 .
null
Wang B1987.The development mechanism for Tibetan Plateau warm vortices[J].Journal of the Atmospheric Sciences44(20): 2978-2994.DOI: 10.1175/1520-0469(1987)044<2978: TDMFTP>2.0.CO; 2 .
null
Webster P J Stephens G L1980.Tropical upper-tropospheric extended clouds: inferences from winter MONEX[J].Journal of the Atmospheric Sciences37(7): 1521-1541.DOI: 10.1175/1520-0469(1980)037<1521: TUTECI>2.0.CO; 2 .
null
Wu G X Guan Y Wang T M, et al, 2011.Vortex genesis over the Bay of Bengal in spring and its role in the onset of the Asian summer monsoon[J].Science China Earth Sciences54(1): 1-9.DOI: 10.1007/s11430-010-4125-6 .
null
Wu G X Liu Y M He B, et al, 2012.Thermal controls on the Asian summer monsoon[J].Scientific Reports, 2: 404.DOI: 10.1038/srep00404 .
null
Xin J Li X F2016.Precipitation responses to radiative processes of water-and ice-clouds: an equilibrium cloud-resolving modeling study[J].Atmospheric and Oceanic Science Letters9(4): 306-314.DOI: 10.1080/16742834.2016.1191938 .
null
陈伯民, 钱正安, 张立盛, 1996.夏季青藏高原低涡形成和发展的数值模拟[J].大气科学20(4): 491-502.DOI: 10.3878/j.issn. 1006-9895.1996.04.14 .
null
丁治英, 刘京雷, 吕君宁, 1994.600 hPa高原低涡生成机制的个例探讨[J].高原气象13(4): 29-36.
null
高文良, 郁淑华, 2007.高原低涡东移出高原的平均环流场分析[J].高原气象26(1): 206-212.
null
葛旭阳, 许可, 马悦, 等, 2018.云辐射强迫效应对热带气旋发展和结构的影响[J].大气科学学报41(1): 46-54.DOI: 10. 13878/j.cnki.dqkxxb.20150421001 .
null
罗布, 智海, 索朗塔杰, 等, 2020.印度洋偶极子中的西极子对西藏高原盛夏降水的影响[J].干旱区地理43(4): 909-919.
null
李国平, 蒋静, 2000.一类奇异孤波解及其在高原低涡结构分析中的应用[J].气象学报58(4): 447-456.DOI: 10.11676/qxxb2000.047 .
null
李国平, 赵福虎, 黄楚惠, 等, 2014.基于NCEP资料的近30年夏季青藏高原低涡的气候特征[J].大气科学38(4): 756-769.DOI: 10.3878/j.issn.1006-9895.2013.13235 .
null
李国平, 卢会国, 黄楚惠, 等, 2016.青藏高原夏季地面热源的气候特征及其对高原低涡生成的影响[J].大气科学40(1): 131-141.DOI: 10.3878/j.issn.1006-9895.1504.15125 .
null
李黎, 吕世华, 范广洲, 2019.夏季青藏高原地表能量变化对高原低涡生成的影响分析[J].高原气象38(6): 1172-1180.DOI: 10.7522/j.issn.1000-0534.2018.00154 .
null
骆美霞, 朱抱真, 张学洪, 1983.青藏高原对东亚纬向型环流形成的动力作用[J].大气科学7(2): 145-152.DOI: 10.3878/j.issn.1006-9895.1983.02.04 .
null
李启芬, 吴哲红, 王兴菊, 等, 2020.1981年以来中国夏季降水变化特征及其与SST和前期环流的联系[J].高原气象39(1): 58-67.DOI: 10.7522/j.issn.1000-0534.2018.00148 .
null
罗四维, 杨洋, 1992.一次青藏高原夏季低涡的数值模拟研究[J].高原气象11(1): 39-48.
null
李宛鸿, 范广洲, 2020.盛夏高原涡生成频数与初夏大气环流背景场的关系[J].西南大学学报(自然科学版)42(1): 103-111.
null
林志强, 2015.1979 -2013年ERA-Interim资料的青藏高原低涡活动特征分析[J].气象学报73(5): 925-939.DOI: 10.11676/qxxb2014.066 .
null
青藏高原气象科学研究拉萨会战组著, 1981.夏半年青藏高原500毫巴低涡切变线的研究[M].北京: 科学出版社, 1-122.
null
叶笃正, 罗四维, 朱抱真, 1957.西藏高原及其附近的流场结构和对流层大气的热量平衡[J].气象学报28(2): 108-121.DOI: 10.11676/qxxb1957.010 .
null
郁淑华, 高文良, 2008.青藏高原低涡移出高原的大尺度条件[J].高原气象27(6): 1276-1287.
null
郁淑华, 高文良, 彭骏, 2012.青藏高原低涡活动对降水影响的统计分析[J].高原气象31(3): 592-604.
null
郁淑华, 高文良, 彭骏, 2015.高原低涡移出高原后持续的对流层中层环流特征[J].高原气象34(6): 1540-1555.DOI: 10.7522/j.issn.1000-0534.2014.00134 .
null
郁淑华, 高文良, 2016.高原涡移出高原后持续的对流层高层环流特征[J].高原气象35(6): 1441-1455.DOI: 10.7522/j.issn. 1000-0534.2016.00026 .
null
张宏文, 高艳红, 2020.基于动力降尺度方法预估的青藏高原降水变化[J].高原气象39(3): 477-485.DOI: 10.7522/j.issn. 1000-0534.2019.00125 .
null
曾钰婷, 张宇, 周可, 等, 2020.青藏高原那曲地区夏季水汽来源及输送特征分析[J].高原气象39(3): 467-476.DOI: 10.7522/j.issn.1000-0534.2019.00120 .
文章导航

/