论文

基于GPM资料的四川盆地及周边地区夏季地形降水垂直结构研究

  • 沈程锋 ,
  • 李国平
展开
  • 1. 成都信息工程大学大气科学学院,四川 成都 610225
    2. 气象灾害预报预警与评估省部共建协同创新中心,江苏 南京 210044

沈程锋(1996 -), 男, 福建罗源人, 硕士研究生, 从事天气动力学研究方向. E-mail:

收稿日期: 2021-07-05

  修回日期: 2021-12-16

  网络出版日期: 2022-12-15

基金资助

国家自然科学基金项目(42075013); 国家重点研发计划项目(2018YFC1507200)

The Vertical Structure of Orographic Precipitation during Warm Season in the Sichuan Basin and Its Surrounding Areas by Using GPM Dual-frequency Spaceborne Precipitation Radar

  • Chengfeng SHEN ,
  • Guoping LI
Expand
  • 1. School of Atmospheric Sciences,Chengdu University of Information Technology,Chengdu 610225,Sichuan,China
    2. Ministry of Education & Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters,Nanjing University of Information Science & Technology,Nanjing 2 10044,Jiangsu,China

Received date: 2021-07-05

  Revised date: 2021-12-16

  Online published: 2022-12-15

本文引用格式

沈程锋 , 李国平 . 基于GPM资料的四川盆地及周边地区夏季地形降水垂直结构研究[J]. 高原气象, 2022 , 41(6) : 1532 -1543 . DOI: 10.7522/j.issn.1000-0534.2021.0116

参考文献

null
Boos W R Kuang Z M2010.Dominant control of the South Asian monsoon by orographic insulation versus plateau heating[J].Nature463(7278): 218-222.DOI: 10.1038/nature08707 .
null
Cao Q Hong Y Gourley J J, et al, 2013.Statistical and physical analysis of the vertical structure of precipitation in the mountainous west region of the United States using 11+ years of spaceborne observations from TRMM precipitation radar[J].Journal of Applied Meteorology and Climatology52(2): 408-424.DOI: 10.1175/JAMC-D-12-095.1 .
null
Chang W Y Lee W C Liou Y C2015.The kinematic and microphysical characteristics and associated precipitation efficiency of subtropical convection during SoWMEX/TiMREX[J].Monthly Weather Review143(1): 317-340.DOI: 10.1175/MWR-D-14-00081.1 .
null
Cifelli R Rutledge S A1998.Vertical motion, diabatic heating, and rainfall characteristics in north Australia convective systems[J].Quarterly Journal of the Royal Meteorological Society124(548): 1133-1162.DOI: 10.1002/qj.49712454806 .
null
Hobbs P V1989.Research on Clouds and Precipitation: Past, Present, and Future, Part I[J].Bulletin of the American Meteorological Society70(3): 282-285.DOI: 10.1175/1520-0477-70. 3.282 .
null
Hou A Y Kakar R K Neeck S, et al, 2014.The global precipitation measurement mission[J].Bulletin of the American Meteorological Society95(5): 701-722.DOI: 10.1175/BAMS-D-13-00164.1 .
null
Houze J R A1982.Cloud clusters and large-scale vertical motions in the tropics[J].Journal of the Meteorological Society of Japan.Ser.II60(1): 396-410.DOI: 10.2151/jmsj1965.60.1_396 .
null
Houze J R A2004.Mesoscale convective systems[J].Reviews of Geophysics42(4).DOI: 10.1016/B978-0-12-374266-7. 00009-3 .
null
Houze J R A Wilton D C Smull B F2007.Monsoon convection in the Himalayan region as seen by the TRMM Precipitation Radar[J].Quarterly Journal of the Royal Meteorological Society133(627): 1389-1411.DOI: 10.1002/qj.106 .
null
Lasser M Sungmin O Foelsche U2019.Evaluation of GPM-DPR precipitation estimates with WegenerNet gauge data[J].Atmospheric Measurement Techniques12(9): 5055-5070.DOI: 10.5194/amt-12-5055-2019 .
null
Liao L Meneghini R2019.Physical evaluation of GPM DPR single-and dual-wavelength algorithms[J].Journal of Atmospheric and Oceanic Technology36(5): 883-902.DOI: 10.1175/JTECH-D-18-0210.1 .
null
Pruppacher H R Klett J D2010.Microstructure of atmospheric clouds and precipitation[M]//Microphysics of Clouds and Precipitation.Springer, Dordrecht.DOI: 10.1007/978-0-306-48100-0 .
null
Sánchez-Diezma R Zawadzki I Sempere-Torres D2000.Identification of the bright band through the analysis of volumetric radar data[J].Journal of Geophysical Research: Atmospheres105(D2): 2225-2236.DOI: 10.1029/1999JD900310 .
null
Sun Y T Dong X Q Cui W J, et al, 2020.Vertical Structures of Typical Meiyu precipitation events retrieved from GPM-DPR[J].Journal of Geophysical Research: Atmospheres125(1): e2019J-e31466J.DOI: 10.1029/2019JD031466 .
null
Wen Y X Kirstetter P Hong Y, et al, 2016.Evaluation of a method to enhance real-time, ground radar-based rainfall estimates using climatological profiles of reflectivity from space[J].Journal of Hydrometeorology17(3): 761-775.DOI: 10.1175/JHM-D-15-0062.1 .
null
Wu G X Liu Y M Wang T M, et al, 2007.The influence of mechanical and thermal forcing by the Tibetan Plateau on Asian climate[J].Journal of Hydrometeorology8(4): 770-789.DOI: 10. 1175/JHM609.1 .
null
Yan Y F Wang X C Liu Y M2018.Cloud vertical structures associated with precipitation magnitudes over the Tibetan Plateau and its neighboring regions[J].Atmospheric and Oceanic Science Letters11(1): 44-53.DOI: 10.1080/16742834.2018.1395680 .
null
Yuter S E Houze R A1995.Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus.part II: Frequency distributions of vertical velocity, reflectivity, and differential reflectivity[J].Monthly Weather Review123(7): 1941.DOI: 10.1175/1520-0493(1995)123<1921: TDKAME>2.0.CO; 2 .
null
Zhang A Q Chen Y L Zhang X D, et al, 2020.Structure of cyclonic precipitation in the Northern Pacific storm track measured by GPM DPR[J].Journal of Hydrometeorology21(2): 227-240.DOI: 10.1175/JHM-D-19-0161.1 .
null
Zhang A Q Fu Y F Chen Y L, et al, 2018.Impact of the surface wind flow on precipitation characteristics over the southern Himalayas: GPM observations[J].Atmospheric Research, 202: 10-22.DOI: 10.1016/j.atmosres.2017.11.001 .
null
Zipser E J Lutz K R1994.The vertical profile of radar reflectivity of convective cells: A strong indicator of storm intensity and lightning probability? [J].Monthly Weather Review122(8): 1751-1759.DOI: 10.1175/1520-0493(1994)122<1751: TVPORR>2.0.CO; 2 .
null
陈贝, 高文良, 周学云, 2016.四川盆地西南部短时强降水天气特征分析[J].高原山地气象研究36(3): 14-20.
null
范建容, 张子瑜, 李立华, 2015.四川省山地类型界定与山区类型划分[J].地理研究34(1): 65-73.DOI: 10.11821/dlyj201501006 .
null
傅云飞, 2019.卫星主被动仪器遥感中国暴雨的研究进展[J].暴雨灾害38(5): 554-563.DOI: 10.3969/j.issn.1004-9045. 2019. 05.0016 .
null
高玄彧, 2004.地貌基本形态的主客分类法[J].山地学报22(3): 261-266.
null
金晓龙, 邵华, 张弛, 等, 2016.GPM卫星降水数据在天山山区的适用性分析[J].自然资源学报31(12): 2074-2085.DOI: 10. 11849/zrzyxb.20160057 .
null
卢美圻, 2017.GPM/DPR星载双频雷达探测降水的敏感性与差异性分析[D].南京: 南京信息工程大学.
null
刘兆晨, 杨梅学, 万国宁, 等, 2021.新型卫星降水产品在黄河源区的适用性分析——以SWAT模型为例[J].高原气象40(2): 403-410.DOI: 10.7522/j.issn.1000-0534.2020.00024 .
null
陶诗言, 卫捷, 张小玲, 2008.2007年梅雨锋降水的大尺度特征分析[J].气象34(4): 3-15.DOI: 10.7519/j.issn.1000-0526. 2008.04.001 .
null
陶诗言, 赵煜佳, 陈晓敏, 1958.东亚的梅雨期与亚洲上空大气环流季节变化的关系[J].气象学报29(2): 119-134.DOI: 10. 11676/qxxb1958.014 .
null
王曙东, 惠建忠, 张国平, 等, 2017.短时临近气象服务降水量等级标准研究[C]// 河南郑州: 第34届中国气象学会年会.
null
魏栋, 刘丽伟, 田文寿, 等, 2021.基于卫星资料的西北地区高原涡强降水分析[J].高原气象40(4): 829-839.DOI: 10.7522/j.issn.1000-0534.2021.000021 .
null
杨斌, 2009.“数字山地”框架下的山地本体及数字化分类研究[D].成都: 成都理工大学.
null
张奡祺, 2019.利用星载双频测雨雷达与静止卫星红外信号研究降水云结构特征[D].合肥: 中国科学技术大学.
null
张庆云, 陶诗言, 彭京备, 2008.我国灾害性天气气候事件成因机理的研究进展[J].大气科学32(4): 815-825.DOI: 10.3878/j.issn.1006-9895.2008.04.10 .
null
钟静, 卢涛, 2018.中国西南地区地形起伏度的最佳分析尺度确定[J].水土保持通报38(1): 175-181.DOI: 10.13961/j.cnki.stbctb.2018.01.031 .
null
赵震, 2019.2016年台风“莫兰蒂”结构特征的多源卫星探测分析[J].高原气象38(1): 156-164.DOI: 10.7522/j.issn.1000-0534.2018.00065 .
文章导航

/