null | Boos W R, Kuang Z M, 2010.Dominant control of the South Asian monsoon by orographic insulation versus plateau heating[J]. Nature, 463(7278): 218-222.DOI: 10.1038/nature08707 . |
null | Cao Q, Hong Y, Gourley J J, et al, 2013.Statistical and physical analysis of the vertical structure of precipitation in the mountainous west region of the United States using 11+ years of spaceborne observations from TRMM precipitation radar[J]. Journal of Applied Meteorology and Climatology, 52(2): 408-424.DOI: 10.1175/JAMC-D-12-095.1 . |
null | Chang W Y, Lee W C, Liou Y C, 2015.The kinematic and microphysical characteristics and associated precipitation efficiency of subtropical convection during SoWMEX/TiMREX[J]. Monthly Weather Review, 143(1): 317-340.DOI: 10.1175/MWR-D-14-00081.1 . |
null | Cifelli R, Rutledge S A, 1998.Vertical motion, diabatic heating, and rainfall characteristics in north Australia convective systems[J]. Quarterly Journal of the Royal Meteorological Society, 124(548): 1133-1162.DOI: 10.1002/qj.49712454806 . |
null | Hobbs P V, 1989.Research on Clouds and Precipitation: Past, Present, and Future, Part I[J]. Bulletin of the American Meteorological Society, 70(3): 282-285.DOI: 10.1175/1520-0477-70. 3.282 . |
null | Hou A Y, Kakar R K, Neeck S, et al, 2014.The global precipitation measurement mission[J]. Bulletin of the American Meteorological Society, 95(5): 701-722.DOI: 10.1175/BAMS-D-13-00164.1 . |
null | Houze J R A, 1982.Cloud clusters and large-scale vertical motions in the tropics[J]. Journal of the Meteorological Society of Japan.Ser.II, 60(1): 396-410.DOI: 10.2151/jmsj1965.60.1_396 . |
null | |
null | Houze J R A, Wilton D C, Smull B F, 2007.Monsoon convection in the Himalayan region as seen by the TRMM Precipitation Radar[J]. Quarterly Journal of the Royal Meteorological Society, 133(627): 1389-1411.DOI: 10.1002/qj.106 . |
null | Lasser M, Sungmin O, Foelsche U, 2019.Evaluation of GPM-DPR precipitation estimates with WegenerNet gauge data[J]. Atmospheric Measurement Techniques, 12(9): 5055-5070.DOI: 10.5194/amt-12-5055-2019 . |
null | Liao L, Meneghini R, 2019.Physical evaluation of GPM DPR single-and dual-wavelength algorithms[J]. Journal of Atmospheric and Oceanic Technology, 36(5): 883-902.DOI: 10.1175/JTECH-D-18-0210.1 . |
null | Pruppacher H R, Klett J D, 2010.Microstructure of atmospheric clouds and precipitation[M]// Microphysics of Clouds and Precipitation.Springer, Dordrecht.DOI: 10.1007/978-0-306-48100-0 . |
null | Sánchez-Diezma R, Zawadzki I, Sempere-Torres D, 2000.Identification of the bright band through the analysis of volumetric radar data[J]. Journal of Geophysical Research: Atmospheres, 105(D2): 2225-2236.DOI: 10.1029/1999JD900310 . |
null | Sun Y T, Dong X Q, Cui W J, et al, 2020.Vertical Structures of Typical Meiyu precipitation events retrieved from GPM-DPR[J]. Journal of Geophysical Research: Atmospheres, 125(1): e2019J-e31466J.DOI: 10.1029/2019JD031466 . |
null | Wen Y X, Kirstetter P, Hong Y, et al, 2016.Evaluation of a method to enhance real-time, ground radar-based rainfall estimates using climatological profiles of reflectivity from space[J]. Journal of Hydrometeorology, 17(3): 761-775.DOI: 10.1175/JHM-D-15-0062.1 . |
null | Wu G X, Liu Y M, Wang T M, et al, 2007.The influence of mechanical and thermal forcing by the Tibetan Plateau on Asian climate[J]. Journal of Hydrometeorology, 8(4): 770-789.DOI: 10. 1175/JHM609.1 . |
null | Yan Y F, Wang X C, Liu Y M, 2018.Cloud vertical structures associated with precipitation magnitudes over the Tibetan Plateau and its neighboring regions[J]. Atmospheric and Oceanic Science Letters, 11(1): 44-53.DOI: 10.1080/16742834.2018.1395680 . |
null | Yuter S E, Houze R A, 1995.Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus.part II: Frequency distributions of vertical velocity, reflectivity, and differential reflectivity[J]. Monthly Weather Review, 123(7): 1941.DOI: 10.1175/1520-0493(1995)123<1921: TDKAME>2.0.CO; 2 . |
null | Zhang A Q, Chen Y L, Zhang X D, et al, 2020.Structure of cyclonic precipitation in the Northern Pacific storm track measured by GPM DPR[J]. Journal of Hydrometeorology, 21(2): 227-240.DOI: 10.1175/JHM-D-19-0161.1 . |
null | Zhang A Q, Fu Y F, Chen Y L, et al, 2018.Impact of the surface wind flow on precipitation characteristics over the southern Himalayas: GPM observations[J]. Atmospheric Research, 202: 10-22.DOI: 10.1016/j.atmosres.2017.11.001 . |
null | Zipser E J, Lutz K R, 1994.The vertical profile of radar reflectivity of convective cells: A strong indicator of storm intensity and lightning probability? [J]. Monthly Weather Review, 122(8): 1751-1759.DOI: 10.1175/1520-0493(1994)122<1751: TVPORR>2.0.CO; 2 . |
null | 陈贝, 高文良, 周学云, 2016.四川盆地西南部短时强降水天气特征分析[J].高原山地气象研究, 36(3): 14-20. |
null | |
null | |
null | 高玄彧, 2004.地貌基本形态的主客分类法[J].山地学报, 22(3): 261-266. |
null | |
null | 卢美圻, 2017.GPM/DPR星载双频雷达探测降水的敏感性与差异性分析[D].南京: 南京信息工程大学. |
null | |
null | |
null | |
null | 王曙东, 惠建忠, 张国平, 等, 2017.短时临近气象服务降水量等级标准研究[C]// 河南郑州: 第34届中国气象学会年会. |
null | |
null | 杨斌, 2009.“数字山地”框架下的山地本体及数字化分类研究[D].成都: 成都理工大学. |
null | 张奡祺, 2019.利用星载双频测雨雷达与静止卫星红外信号研究降水云结构特征[D].合肥: 中国科学技术大学. |
null | |
null | |
null | |