论文

一次华北暴风雪过程中边界层中尺度扰动涡旋和水汽输送特征的分析

  • 易笑园 ,
  • 张庆 ,
  • 陈宏 ,
  • 林晓萌 ,
  • 陶局
展开
  • 1. 天津市气象台,天津 300074
    2. 宁波气象局灾害防御预警中,浙江 宁波 315000
易笑园(1965 -), 女, 江西宜春人, 正高级工程师, 从事灾害天气预警预报及其技术研究. E-mail:

收稿日期: 2022-03-16

  修回日期: 2022-08-31

  网络出版日期: 2023-05-18

基金资助

国家自然科学基金项目(41575049)

Analysis of Planetary Boundary Layer Mesoscale Disturbance Vortex and Moisture Transport during a Blizzard Process in North China

  • Xiaoyuan YI ,
  • Qing ZHANG ,
  • Hong CHEN ,
  • Xiaomeng LIN ,
  • Ju TAO
Expand
  • 1. Tianjin Meteorological Observatory,Tianjin 300074,China
    2. Disaster Prevention and Warning Center of Ningbo Meteorological Office,Zhejiang Province,Ningbo 315000,Zhejiang,China

Received date: 2022-03-16

  Revised date: 2022-08-31

  Online published: 2023-05-18

摘要

利用多部风廓线雷达和多普勒雷达、 地面自动气象观测站、 探空和卫星等多种监测资料, 结合ERA5 0.25°×0.25°逐小时再分析资料, 针对2020年2月14日华北暴风雪过程中边界层中尺度扰动涡旋(PMDV)开展分析, 包括空间结构、 形成维持机制及其对降雪的影响, 同时关注多股气流在不同高度层的水汽输送和净流入等特征。结果表明: PMDV是在500 hPa冷涡前部、 850 hPa暖性倒槽内和近地层东北风“冷垫”之上的悬空涡旋, 其厚度约为1.2 km, 水平尺度为100~300 km, 生命史达17 h。它最先在边界层内出现, 而后向上伸展(顶部达2 km), 最终在边界层内消失。PMDV的成因: 一是强劲持久的偏东气流西进, 遇太行山脉阻挡, 发生逆时针转向; 二是在涡旋初生地存在持久的锋生作用, 且4 h后在850 hPa上出现完整的气旋性环流。PMDV的发展维持原因是暖平流输送造成减压、 凝结潜热释放和弱锋生三者的共同作用。PMDV促进了研究区内的东南风急流、 正涡度、 垂直上升速度和水汽通量散度等物理量的增大或加强, 从而影响了降雪的持续时间和强度。研究区内的水汽绝大部分源于850 hPa以下的三股气流, 西南支气流携带的水汽虽最为深厚, 但在700 hPa以上的净流入极少; 东南支气流对水汽的贡献最大, 占净流入总量的86.4%; 东北支气流携带的水汽多集中于850 hPa层。

本文引用格式

易笑园 , 张庆 , 陈宏 , 林晓萌 , 陶局 . 一次华北暴风雪过程中边界层中尺度扰动涡旋和水汽输送特征的分析[J]. 高原气象, 2023 , 42(5) : 1311 -1324 . DOI: 10.7522/j.issn.1000-0534.2022.00079

Abstract

Based on the data of networked wind profiles and Doppler radars, ground automatic weather observation station, radiosonde and FY-4 satellite, combined with the ECMWF ERA5 1 h 0.25°×0.25° reanalysis data, this paper analyzes the spatial structure, formation, maintenance and function of PMDV that occurred in boundary layer to lower troposphere in North China during the blizzard weather on 14 February 2020.Besides, the moisture transported by multiple air flows and the net inflow are calculated and compared.The results indicate that PMDV was located in the front of the 500 hPa cold vortex, within the 850 hPa warm inverted trough and on the noutheast backflow.The PMDV was suspended vortex, with a horizontal range of 100~300 km and a vertical thickness of 1.2 km and a life span of 17 h.It first appeared in the boundary layer and then extended to higher altitudes(top at 2 km) and finally disappeared in the boundary layer.One of the reasons for formation of PMDV was that the strong and persistent east-northeast wind blew westward and then turned counterclockwise after being blocked by the Taihang Mountains running from northeast to northwest.Another reason was that the stronger frontogenesis appeared at PMDV primary position and it had maintained about 4 h ahead of complete cyclonic wind field circulation formed.The reason for maintenance of PMDV was under the common action of decompression (caused by warm advection), weaker frontogenesis (caused by dense temperature gradient) and release of latent heat of internal condensation.The PMDV promoted the strengthening of low-level jet and the increase of positive vorticity in the southeast of its northeast side (blizzard area), causing the upward movement, water vapor transport and aggregation in the study area to increase.Most moisture transported in the blizzard area was originated from multiple air currents below 850 hPa, among which the southeast branch contributed most, accounting for 86.4% of the total net inflow.The wet layer carried by the northeast branch airflow was concentrated in the 850 hPa layer, but the northwest airflow maintained dry all the time.Though the wet layer of southwest branch airflow was deep, the net inflow of water vapor above 700 hPa was very small.

参考文献

null
Davis C A Galarneau T J2009.The vertical structure of mesoscale convective vortice[J].Journal of the Atmospheric Sciences66(3): 686-704.
null
Liu B M Guo J P Gong W, et al, 2020.Characteristics and performance of wind profiles as observed by the radar profiler network of China[J].Atmospheric Measurement Techniques, 13: 4589-4600.
null
Trier S B Davis C A Tuttle J D2000.Long-lived mesoconvective vortices and their environment.Part1: observation from the central United States during the 1988 warm season[J].Monthly Weather Review128(10): 3376-3395.
null
Yang Z Huang W He X, et al, 2019.Synoptic conditions and moisture sources for extreme snowfall events over East China[J].Journal of Geophysical Reserch(Atmospheres), 124: 601-623.
null
Yu C K Jou B J D Smull B F1999.Formative stage of a long-lived mesoscale vortex observed by airborne Doppler radar[J].Monthly Weather Review.127(5): 838-857.
null
Zhang D L1992.The formation of a cooling-incluced mesovortex in the trailing straliform region of a millatitude squll line[J].Monthly Weather Review.120(2): 2763-2785.
null
边志强, 王建捷, 谈哲敏, 2002.对华北锢囚锋个例的数值模拟分析[J].气象25(10): 8-14.
null
程麟生, 冯伍虎, 2003.“98.7”暴雨β中尺度低涡生成发展结构演变: 双向四重嵌套网格模拟[J].气象学报61(4): 385–395.
null
翟国庆, 王智, 何斌, 2003.长江中下游梅雨期中小尺度涡旋族发生演变分析[J].气象学报61(6): 661-672.
null
东高红, 韩素芹, 刘一玮, 等, 2013.一次大暴雨过程中尺度涡旋系统特征分析[J].暴雨灾害32(2): 97-104.
null
东高红, 张志茹, 李胜山, 等, 2007.一次大雪天气过程的多普勒雷达特征分析[J].气象33(7): 75-81.
null
范俊红, 易笑园, 2019.大范围持续暴雪过程中多种影响系统的对比分析[J].气象学报77(6): 665-679.
null
谷文龙, 2008.长江下游梅雨锋中尺度涡旋统计分析与模拟研究[D].南京: 南京信息工程大学.
null
李跃清, 2021.西南涡涡源研究的有关新进展[J].高原气象40(6): 1394-1406.DOI: 10.7522/j.issn.1000-0534.2021.zk005 .
null
李兆慧, 王东海, 王建捷, 等, 2011.一次暴雪过程的锋生函数和急流-锋面次级环流分析[J].高原气象30(6): 1505-1515.
null
沈杭锋, 翟国庆, 尹金方, 等, 2013.长江下游梅汛期中尺度涡旋的特征分析[J].大气科学37(4): 923-932.
null
沈杭锋, 章元直, 查贲, 等, 2015.梅雨锋上边界层中尺度扰动涡旋的个例研究[J].大气科学39(5): 1025-1037.
null
孙艳辉, 李泽椿, 寿绍文, 2015.一次暴风雪过程中的中尺度重力波特征及其影响[J].气象学报73(4): 697-710.
null
王东海, 端义宏, 刘英, 等, 2013.一次秋季温带气旋的雨雪天气过程分析[J].气象学报71(4): 606-627.
null
王金鑫, 潘益农, 束宇, 等, 2014.中国对流涡旋(MCV)近30a来的研究进展[J].气象科学34(3): 34-45.
null
王丽荣, 刘黎平, 王立荣, 等, 2013.“09.11.10”石家庄特大暴雪中尺度风场分析[J].气象39(8): 1023-1030.
null
王智, 翟国庆, 高坤, 2003.长江中游一次β中尺度低涡的数值模拟[J].气象学报61(1): 66-77.
null
徐亚梅, 高坤, 2002.1998年7月22日长江中下游中β低涡的数值模拟及分析[J].气象学报60(1): 85-95.
null
杨成芳, 周淑, 刘畅, 等, 2015.一次入海气旋局地暴雪的结构演变及成因观测分析[J].气象学报73(6): 1039-1051.
null
叶晨, 王建捷, 张文龙, 2011.北京2009“1101”暴雪的形成机制[J].应用气象学报22(4): 398-410.
null
易笑园, 李泽春, 朱磊磊, 等, 2010.一次β中尺度暴风雪的成因及动力热力结构[J].高原气象29(1): 175-186.
null
易笑园, 李泽椿, 陈涛, 等, 2009.2007年3月3-5日强雨雪过程中的干冷空气活动及其作用[J].南京气象学院学报32(2): 306-313.
null
张立生, 2008.淮河流域致洪暴雨及其中尺度涡旋的发生发展研究[D].北京: 中国科学院论文, 148.
null
张楠, 易笑园, 朱立娟, 等, 2014.地面气旋影响下两次华北暴雪(雨)过程分析[J].气象与环境学报30(5): 7-14.
null
张雅乐, 俞小鼎, 2021.黄河气旋暴雨过程发展演变成因分析[J].高原气象40(1): 1204-1212.DOI: 10.7522/j.issn.1000-0534.2019.00103 .
null
张迎新, 侯瑞钦, 张守保, 2007.回流暴雪过程的诊断分析和数值试验[J].气象33(9): 25-32.
null
张迎新, 姚学祥, 侯瑞钦, 2011a.2009年秋季冀中南暴雪过程的地形作用分析[J].气象37(7): 857-862.
null
张迎新, 张守保, 裴宇杰, 等, 2011b.2009年11月华北暴雪过程的诊断分析[J].高原气象30(5): 1204-1212.
null
张元春, 孙建华, 傅慎明, 2012.冬季一次引发华北暴雪的低涡涡度分析[J].高原气象31(2): 387-399.
null
赵桂香, 杜莉, 范卫东, 等, 2011.一次冷锋倒槽暴风雪过程特征及其成因分析[J].高原气象30(6): 1516-1525.
null
钟水新, 2020.地形对降水的影响机理及预报方法研究进展[J].高原气象39(5): 1122-1132.DOI: 10.7522/j.issn.1000-0534.2019.00083 .
文章导航

/