论文

积雪和沙尘对冰封期青海湖辐射和温度的影响

  • 牛瑞佳 ,
  • 文莉娟 ,
  • 王梦晓 ,
  • 赵仪欣 ,
  • 董靖玮 ,
  • 王冠添 ,
  • 王琦
展开
  • 1. 中国科学院西北生态环境资源研究院/中国科学院寒旱区陆面过程与气候变化重点实验室,甘肃 兰州 730000
    2. 中国科学院大学,北京 100049
    3. 甘肃省人工影响天气办公室,甘肃 兰州 730020

牛瑞佳(1997 -), 女, 山西人, 博士研究生, 主要从事陆面过程与气候变化研究. E-mail:

收稿日期: 2022-10-15

  修回日期: 2023-03-07

  网络出版日期: 2023-07-18

基金资助

国家重点研发计划-政府间国际科技创新合作重点专项(2019YFE0197600); 国家自然科学基金项目(42275044); 中国科学院“西部之光”项目(E129030101); 甘肃省自然科学基金项目(22JR5RA073); 中国气象局创新发展专项(CXFZ2021Z036); 第二次青藏高原综合科学考察研究项目(2019QZKK0104)

Effects of Snow and Dust on Radiation and Temperature in Qinghai Lake during Ice-covered Period

  • Ruijia NIU ,
  • Lijuan WEN ,
  • Mengxiao WANG ,
  • Yixin ZHAO ,
  • Jingwei DONG ,
  • Guantian WANG ,
  • Qi WANG
Expand
  • 1. Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions,Northwest Institute of Eco-Environmental Resources,Lanzhou 730000,Gansu,China
    2. University of Chinese Academy of Sciences,Beijing 100049,China
    3. Gansu Weather Modification Office,Lanzhou 730020,Gansu,China

Received date: 2022-10-15

  Revised date: 2023-03-07

  Online published: 2023-07-18

本文引用格式

牛瑞佳 , 文莉娟 , 王梦晓 , 赵仪欣 , 董靖玮 , 王冠添 , 王琦 . 积雪和沙尘对冰封期青海湖辐射和温度的影响[J]. 高原气象, 2023 , 42(4) : 913 -922 . DOI: 10.7522/j.issn.1000-0534.2023.00021

参考文献

null
Baijnath‐Rodino J A Duguay C R LeDrew E2018.Climatological trends of snowfall over the Laurentian Great Lakes Basin[J].International Journal of Climatology38(10): 3942-3962.DOI: 10.1002/joc.5546 .
null
Brown L C Duguay C R2010.The response and role of ice cover in lake-climate interactions[J].Progress in Physical Geography34(5): 671-704.DOI: 10.1177/0309133310375653 .
null
Cao X W Lu P Lepp?ranta M, et al, 2021.Solar radiation transfer for an ice-covered lake in the central Asian arid climate zone[J].Inland Waters11(1): 89-103.DOI: 10.1080/20442041. 2020. 1790274 .
null
Cheng Y B Cheng B Zheng F, et al, 2020.Air/snow, snow/ice and ice/water interfaces detection from high-resolution vertical temperature profiles measured by ice mass-balance buoys on an Arctic lake[J].Annals of Glaciology61(83): 309-319.DOI: 10.1017/aog.2020.51 .
null
Cordeira J M Laird N F2008.The influence of ice cover on two lake-effect snow events over Lake Erie[J].Monthly Weather Review136(7): 2747-2763.DOI: 10.1175/2007MWR2310.1 .
null
Duguay C R Flato G M Jeffries M O, et al, 2003.Ice‐cover variability on shallow lakes at high latitudes: model simulations and observations[J].Hydrological Processes17(17): 3465-3483.DOI: 10.1002/hyp.1394 .
null
Gou P Ye Q H Tao C, et al, 2017.Lake ice phenology of Nam Co, Central Tibetan Plateau, China, derived from multiple MODIS data products[J].Journal of Great Lakes Research43(6): 989-998.DOI: 10.1016/j.jglr.2017.08.011 .
null
Huang W F Li R L, Han, H W, et al, 2016.Ice processes and surface ablation in a shallow thermokars lake in the central Qinghai-Tibetan Plateau[J].Annals of Glaciology57(71): 20-28.DOI: 10.3189/2016AoG 71A016 .
null
Kirillin G Lepp?ranta M Terzhevik A, et al, 2012.Physics of seasonally ice-covered lakes: a review[J].Aquatic Sciences74(4): 659-682.DOI: 10.1007/s00027-012-0279-y .
null
Kirillin G Wen L J Shatwell T2017.Seasonal thermal regime and climatic trends in lakes of the Tibetan highlands[J].Hydrology and Earth System Sciences21(4): 1895-1909.DOI: 10.5194/hess-21-1895-2017 .
null
Lang J H Lyu S H Li Z G, et al, 2018.An investigation of ice surface albedo and its influence on the high-altitude lakes of the Tibetan Plateau[J].Remote Sensing10(2): 1-27.DOI: 10.3390/rs10020218 .
null
Lepp?ranta M2010.Modelling the formation and decay of lake ice[M].Springer, Dordrecht: 63-83.
null
Lepp?ranta M2014.Freezing of Lakes and the Evolution of their Ice Cover[M].Springer, Berlin, Heidelberg.
null
Lepp?ranta M Terzhevik A Shirasawa K2010.Solar radiation and ice melting in Lake Vendyurskoe, Russian Karelia[J].Hydrology Research41(1): 50-62.DOI: 10.2166/nh.2010.122 .
null
Li X Y Ma Y J Huang Y M, et al, 2016.Evaporation and surface energy budget over the largest high-altitude saline lake on the Qinghai Tibet Plateau[J].Journal of Geophysical Research: Atmospheres121(16): 10470-10485.DOI: 10.1002/2016jd025027 .
null
Li Z G Lyu S H Lang J H2018.Investigation of the ice surface albedo in the Tibetan Plateau lakes based on the field observation and MODIS products[J].Journal of Glaciology64(245): 506-516.DOI: 10.1017/jog.2018.35 .
null
Li Z Lyu S H Wen L, et al, 2021.Study of freeze-thaw cycle and key radiation transfer parameters in a Tibetan Plateau lake using LAKE2.0 model and field observations[J].Journal of Glaciology67(261): 91-106.DOI: 10.1017/jog.2020.87 .
null
Meding M E Jackson L J2001.Biological implications of empirical models of winter oxygen depletion[J].Canadian Journal of Fisheries and Aquatic Sciences58(9): 1727-1736.DOI: 10.1139/cjfas-58-9-1727 .
null
Notaro M Bennington V Vavrus S2015.Dynamically downscaled projections of lake-effect snow in the Great Lakes basin[J].Journal of Climate28(4): 1661-1684.DOI: 10.1175/JCLI-D-14-00467.1 .
null
Sharma S Magnuson John J Batt Ryan D2016.Direct observations of ice seasonality reveal changes in climate over the past 320-570 years[J].Scientific Reports6(1): 1-11.DOI: 10.1038/srep25061 .
null
Su D S Wen L J Gao X Q, et al, 2020.Effects of the largest lake of the Tibetan Plateau on the regional climate[J].Journal of Geophysical Research: Atmospheres125(22): 1-18.DOI: 10. 1029/2020JD033396 .
null
Svacina N Duguay C King J2014.Modelled and satellite‐derived surface albedo of lake ice-part II: evaluation of MODIS albedo products[J].Hydrological Processes28(16): 4562-4572.DOI: 10.1002/hyp.10257 .
null
Wan W Long D Hong Y, et al, 2016.A lake data set for the Tibetan Plateau from the 1960s, 2005, and 2014[J].Scientific Data3(1): 1-13.DOI: 10.1038/sdata.2016.39 .
null
Wang B B Ma Y M Ma W Q, et al, 2017.Physical controls on half‐hourly, daily, and monthly turbulent flux and energy budget over a high‐altitude small lake on the Tibetan Plateau[J].Journal of Geophysical Research: Atmospheres122(4): 2289-2303.DOI: 10.1002/2016JD026109 .
null
Zhang G Q, L W, Chen W F, et al, 2019.A robust but variable lake expansion on the Tibetan Plateau[J].Science Bulletin64(18): 1306-1309.DOI: 10.1016/j.scib.2019.07.018 .
null
Zhao Z Z Huang A N Ma W Q, et al, 2022.Effects of Lake Nam Co and surrounding terrain on extreme precipitation over Nam Co Basin, Tibetan Plateau: a case study[J].Journal of Geophysical Research: Atmospheres127(10): 1-20.DOI: 10.1029/2021JD036190 .
null
曹晓卫, 2021.乌梁素海湖冰生消过程观测与模拟研究[D].大连: 大连理工大学.
null
陈贤章, 王光宇, 李文君, 等, 1995.青藏高原湖冰及其遥感监测[J].冰川冻土17(3): 241-246.
null
方楠, 阳坤, 拉珠, 等, 2017.WRF湖泊模型对青藏高原纳木错湖的适用性研究[J].高原气象36(3): 610-618.DOI: 10.7522/j.issn.1000-0534.2016.00038 .
null
黄文峰, 韩红卫, 牛富俊, 等, 2016.季节性冰封热融浅湖水温原位观测及其分层特征[J].水科学进展27(2): 280-289.DOI: 10.14042/j.cnki.32.1309.2016.02.013 .
null
解飞, 张议文, 卢鹏, 等, 2021.寒区浅水湖冰生消特征及其影响因素[J].湖泊科学33(5): 1552-1563.DOI: 10.18307/2021. 0523 .
null
刘奇, 2021.基于遥感数据的青海湖水体变化特征与影响因素研究[D].北京: 中国地质大学(北京).DOI: 10.27493/d.cnki.gzdzy. 000978 .
null
马耀明, 胡泽勇, 王宾宾, 等, 2021.青藏高原多圈层地气相互作用过程研究进展和回顾[J].高原气象40(6): 1241-1262.DOI: 10.7522/j.issn.1000-0534.2021.zk006 .
null
青海省水利厅, 青海省统计局, 2015.青海省第一次水利普查公报[J].青海统计 (10): 34-39.
null
曲斌, 康世昌, 陈锋, 等, 2012.2006-2011年西藏纳木错湖冰状况及其影响因素分析[J].气候变化研究进展8(5): 18-24.DOI: 10.3969/j.issn.1673-1719.2012.05.003 .
null
宋爽, 2019.冰封期乌梁素海光热特性及冰下水体初级生产力研究[D].呼和浩特: 内蒙古农业大学.
null
孙永寿, 李其江, 刘弢, 等, 2021.青海湖1956~2019年水位变化原因及水量平衡分析研究[J].水文41(5): 91-96.DOI: 10.19797/j.cnki.1000-0852.20200215 .
null
汤明光, 李志军, 卢鹏, 等, 2020.乌梁素海湖冰晴天反照率日变化特征的统计模型比较和分析[J].湖泊科学32(6): 1858-1868.DOI: 10.18307/2020.0625 .
null
汪关信, 2020.青海湖湖冰特征及其变化[D].兰州: 兰州大学.DOI: 10.27204/d.cnki.glzhu.2020.000178 .
null
吴其慧, 李畅游, 孙标, 等, 2019.1986-2017年呼伦湖湖冰物候特征变化[J].地理科学进展38(12): 1933-1943.DOI: 10. 18306/dlkxjz.2019.12.009 .
null
羊向东, 2018.青藏高原湖泊硅藻-湖水盐度转换关系数据库(1723-2001)[DB].国家青藏高原科学数据中心, [2022-01-26].DOI: 10.11888/Ecology.tpe.19.db.CSTR: 18406.11.Ecology.tpe. 19.db .
null
姚彤, 张强, 2014.我国北方不同类型下垫面地表反照率特征[J].物理学报63(8): 460-468.DOI: 10.7498/aps.63.089201 .
null
张津榕, 2021.湖冰/雪层辐射传输特征及其对冰封湖泊能量平衡的影响[D].西安: 长安大学.DOI: 10.26976/d.cnki.gchau. 2021.002145 .
null
赵仪欣, 文莉娟, 王梦晓, 等, 2023.基于能量平衡的分析模型在青海湖湖冰模拟中的应用[J].高原气象42(3): 590-602.DOI: 10. 7522/j.issn.1000-0534.2022.00042 .
文章导航

/