论文

20年青藏高原云分布特征及云参数时空变化分析

  • 张敬书 ,
  • 荆林海 ,
  • 王思远
展开
  • 1. 中国科学院空天信息创新研究院,数字地球重点实验室,北京 100094
    2. 可持续发展大数据国际研究中心,北京 100094
    3. 中国科学院大学 资源与环境学院,北京 100049
    4. 中国科学院生态环境研究中心 城市与区域生态国家重点实验室,北京 100085

张敬书(1996 -), 女, 河北石家庄人, 硕士研究生, 主要从事卫星大气遥感研究.E-mail:

收稿日期: 2022-06-29

  修回日期: 2022-08-31

  网络出版日期: 2023-09-26

基金资助

第二次青藏高原综合科学考察研究项目(2019QZKK0806); 国家自然科学基金项目(41972308)

Spatial and Temporal Variations of Cloud Parameters over the Qinghai-Xizang Plateau during the Past Two Decades

  • Jingshu ZHANG ,
  • Linhai JING ,
  • Siyuan WANG
Expand
  • 1. Key Laboratory of Digital Earth Science,Aerospace Information Research Institute,Chinese Academy of Sciences,Beijing 10094. China
    2. International Reasearch Center of Big Data for Sustainable Development Goals,Beijing 100094,China
    3. College of Resources and Environment,University of Chinese Academy of Sciences,Beijing 100049,China
    4. Research Center for Eco-Environmental Sciences,Chinese Academy of Sciences,Beijing 100085,China

Received date: 2022-06-29

  Revised date: 2022-08-31

  Online published: 2023-09-26

摘要

准确估算云量是了解青藏高原云参数时空特征的基础。通过相关分析、 回归分析、 趋势分析方法, 分析了近21年来青藏高原云分布的动态变化。利用MODIS云量日产品(MOD08_D3)数据和ERA5再分析资料, 分析了青藏高原不同阶段云量分布和云参数的时空特征。结果表明, 高云区云量中心位于墨脱县(77.3%), 林芝(72.5%)地区云量最大, 青藏高原日平均云量在过去21年间减少了0.04%。季节分布上, 夏季出现水云的概率最高(31.7%), 春季出现冰云的概率最高(26.5%)。每年出现的冰云比水云高2%左右。在全球变暖背景下, 青藏高原上空水汽含量呈减少趋势, 云水含量呈逐渐增加趋势。年平均云水含量比大气总水汽含量高约0.01 cm, 云水总含量增加约0.04 cm。本研究为理解云水资源对全球气候变化和青藏高原地区水循环的影响提供了依据。

本文引用格式

张敬书 , 荆林海 , 王思远 . 近20年青藏高原云分布特征及云参数时空变化分析[J]. 高原气象, 2023 , 42(5) : 1107 -1118 . DOI: 10.7522/j.issn.1000-0534.2022.00081

Abstract

Accurate estimation of cloud cover is the basis for understanding the spatial and temporal characteristic of cloud parameters on the Qinghai-Xiznag Plateau (QXP).The dynamic changes in cloud distribution on the Qinghai-Xiznag Plateau are analyzed by the correlation analysis, regression analysis and trend analysis method.Using the MODIS cloud daily product (MOD08_D3) data and ERA5 reanalysis data from 2000 to 2020, the temporal and spatial characteristics of cloud distribution and cloud parameters in different phases over the Tibetan Plateau are analyzed.The results show that the high cloud cover center is located in Medog County (77.3%), and Nyingchi (72.5%) is the maximum cloud cloud-covered area.The total cloud cover over the QXP has decreased by 0.04% in the past 21 years.Regarding seasonal distribution, the probability of liquid water clouds present in Summer is the highest (31.7%), and the probability of ice clouds present in Spring is the highest (26.5%).The ice cloud occurrence per year is about 2% more than liquid cloud.Under the background of global warming, the atmospheric water vapor over the QXP shows a decreasing trend, whereas the cloud water content shows a gradually increasing trend.The annual average cloud water vapor is about 0.01 cm higher than the total atmospheric water vapor, and the total cloud water vapor increased by about 0.04 cm.This study provides a basis for understanding the influence of cloud water resources on global climate change and the water cycle over the QXP.

参考文献

null
Baker M B1997.Cloud microphysics and climate[J].Science276(5315): 1072-1078.
null
Bao S Letu H Zhao J, et al, 2019.Spatiotemporal distributions of cloud parameters and their response to meteorological factors over the Tibetan Plateau during 2003-2015 based on MODIS data[J].International Journal of Climatology39(1): 532-543.
null
Fujinami H Yasunari T2001.The seasonal and intraseasonal variability of diurnal cloud activity over the Tibetan Plateau[J].Journal of the Meteorological Society of Japan.Ser.II79(6): 1207-1227.
null
Gao B C Yang P Guo G, et al, 2003.Measurements of water vapor and high clouds over the Tibetan Plateau with the Terra MODIS Instrument[J].IEEE Transactions on Geoscience and Remote Sensing41(4): 895-900.
null
Hubanks P Platnick S King M D, et al, 2020.MODIS Atmosphere L3 Global Gridded Product User's Guide & ATBD for C6.1 Products: 08_D3, 08_E3, 08_M3.
null
IPCC, 2021.Climate Change 2021: the physical science basis [M/OL].
null
King M D Platnick S Menzel W P2013.Spatial and temporal distribution of clouds observed by MODIS onboard the Terra and Aqua satellites[J].IEEE Transactions on Geoscience and Remote Sensing51 (7): 3826-3852.
null
Lei Y Letu H Shang H, et al, 2020.Cloud cover over the Tibetan Plateau and eastern China: a comparison of ERA5 and ERA-Interim with satellite observations[J].Climate Dynamic54(5-6), 2941-2957.
null
Li X Che H Wang H, et al, 2019.Spatial and temporal distribution of the cloud optical depth over China based on MODIS satellite data during 2003-2016[J].Journal of Environmental Sciences80(6): 66-81.
null
Liu Y Wu W Jensen M P, et al, 2011.Relationship between cloud radiative forcing, cloud fraction and cloud albedo, and new surface-based approach for determining cloud albedo[J].Atmospheric Chemistry and Physics11(14): 7155-7170.
null
Matus A V Tristan S,L'Ecuyer,2017.The role of cloud phase in Earth's radiation budget[J].Journal of Geophysical Research: Atmospheres122(5): 2559-2578.
null
Platnick S Meyer K G King M D, et al, 2017.The MODIS cloud optical and microphysical products: Collection 6 updates and examples From Terra and Aqua[J].IEEE Transactions on Geoscience and Remote Sensing55(1): 502-525.
null
Qiu J2008.China: The third pole[J].Nature454(7203): 393-396.
null
Ramanathan V L, R D, Cess R D Harrison E.F, et al, 1989.Cloud-radiative forcing and climate: results from the Earth Radiation Budget Experiment[J].Science243(4887): 57-63.
null
Rangwala I James R M2012.Climate change in mountains: a review of elevation-dependent warming and its possible causes[J].Climatic Change114(3): 527-547.
null
Rosenfeld D Sherwood S Wood R, et al, 2014.Climate effects of aerosol-cloud interactions[J].Science343(6169): 379-380.
null
Sen, P K, 1968.Estimates of the regression coefficient based on Kendall's Tau[J].Journal of the American Statistical Association63(324): 1379-1389.
null
Shang H Letu H Nakajima T Y, et al, 2018.Diurnal cycle and seasonal variation of cloud cover over the Tibetan Plateau as determined from Himawari-8 new-generation geostationary satellite data[J].Scientific Reports8(1): 1-8.
null
Simpkins G2018.Aerosol-cloud interactions[J].Nature Climate Change8(6): 457.
null
Stephens G L Vane D G Boain R J, et al, 2002.The cloudsat mission and the a-train[J].Bulletin of the American Meteorological Society83(12): 1771-1790.
null
Stephens G2006.The role of water vapor and clouds in the climate system[J].Encyclopedia of Hydrological Sciences124(7): 3984-4003.
null
Sunil S Padmakumari B Pandithurai G, et al, 2021.Diurnal (24 h) cycle and seasonal variability of cloud fraction retrieved from a Whole Sky Imager over a complex terrain in the Western Ghats and comparison with MODIS[J].Atmospheric Research, 248: 105-180.
null
伯玥,王艺,李嘉敏,等, 2016.青藏高原地区云水时空变化特征及其与降水的联系[J].冰川冻土38(6): 1679-1690.
null
陈光灿, 李函璐, 傅云飞, 2021.利用MODIS和CERES遥感数据研究青藏高原的云辐射强迫效应[J].高原气象40(1): 15-27.DOI: 10.7522/j.issn.1000-0534.2019.00107 .
null
陈艳, 2007.中国西北干旱半干旱区沙尘气溶胶对云特性的影响及云的辐射强迫效应[D].兰州: 兰州大学.
null
赫小红, 宋敏红, 周梓萱, 2020.夏季青藏高原空中云水资源的时空特征分析[J].高原气象39(6):1339-1347.DOI: 10.7522/j.issn.1000-0534.2019.00135 .
null
黄建平,刘玉芝, 王天河,等,2021.青藏高原及周边地区气溶胶、云和水汽收支研究进展[J].高原气象40(6):1225-1240.DOI: 10.7522/j.issn.1000-0534.2021.zk012 .
null
赖欣, 范广洲, 华维, 等, 2021.青藏高原陆气相互作用对东亚区域气候影响的研究进展[J].高原气象40(6): 1263-1277.DOI: 10.7522/j.issn.1000-0534.2021.zk018 .
null
李兴宇, 郭学良, 朱江, 2008.中国地区空中云水资源气候分布特征及变化趋势[J].大气科学32(5):1094-1106.
null
李文韬, 李兴宇, 张礼林, 等, 2018.青藏高原云水气候特征分析[J].气候与环境研究23(5): 574-586.
null
刘菊菊, 李天江, 卫玮, 2021.气温变化对中国夏季云水量的影响[J].高原气象40(4): 747-759.DOI: 10.7522 /j.issn.1000-0534.2018.00138 .
null
刘屹岷, 燕亚菲, 吕建华, 等, 2018.基于CloudSat/CALIPSO卫星资料的青藏高原云辐射及降水的研究进展[J].大气科学42(4):847-858.
null
马耀明, 胡泽勇, 王宾宾, 等, 2021.青藏高原多圈层地气相互作用过程研究进展和回顾[J].高原气象40(6): 1241-1262.DOI: 10.7522/j.issn.1000-0534.2021.zk006 .
null
尚可, 刘晓东, 2021.春季青藏高原对流层低层暖中心变化对中亚-高原降水异常的影响[J].高原气象40(6): 1443-1454.DOI: 10.7522/j.issn.1000-0534.2021.zk015 .
null
解承莹, 李敏姣, 张雪芹, 2014.近30a青藏高原夏季空中水资源时空变化特征及其成因[J].自然资源学报29(6): 979-989.
null
汪会, 罗亚丽, 张人禾, 2011.用CloudSat/CALIPSO资料分析亚洲季风区和青藏高原地区云的季节变化特征[J].大气科学35(6): 1117-1131.
null
王慧, 张璐, 石兴东, 等, 2021.2000年后青藏高原区域气候的一些新变化[J].地球科学进展36(8):785-796.
null
王志鹏, 张宪洲, 何永涛, 等, 2018.2000—2015年青藏高原草地归一化植被指数对降水变化的响应[J].应用生态学报29(1):75-83.
null
杨耀先, 胡泽勇, 路富全, 等, 2022.青藏高原近60年来气候变化及其环境影响研究进展[J].高原气象41(1): 1-10.DOI: 10. 7522/j.issn.1000-0534.2021.00117 .
null
赵宗慈, 罗勇, 黄建斌, 2022.地球能量失衡与全球变暖[J].气候变化研究进展18(1): 119-121.
null
张德杰, 师春香, 张涛, 等, 2022.多种资料的云量产品在中国区域的对比分析[J].高原气象41(3): 803-813.DOI: 10.7522/j.issn.1000-0534.2021.00019 .
null
张华, 王菲, 赵树云, 等, 2021.IPCC AR6 报告解读:地球能量收支、气候反馈和气候敏感度[J].气候变化研究进展17(6): 691-698.
null
张正国, 简悦, 李宇中, 等, 2021.基于ERA5资料的广西地区云水资源评估[J].气象科技49(5): 806-814.
null
周思儒, 信忠保, 2022.近20年青藏高原水资源时空变化研究[J].长江科学院院报:1-10.
null
周婷, 张寅生, 高海峰, 等, 2015.青藏高原高寒草地植被指数变化与地表温度的相互关系[J].冰川冻土37(1):58-69.
文章导航

/