论文

不同水汽源地对夏季青藏高原降水过程影响的模拟研究

  • 朱昌睿 ,
  • 宋敏红 ,
  • 张少波 ,
  • 马龙腾飞
展开
  • 成都信息工程大学大气科学学院/高原大气与环境四川省重点实验室,四川 成都 610225

朱昌睿(2000 -), 男, 安徽蚌埠人, 硕士研究生, 主要从事数值模拟研究. E-mail:

收稿日期: 2022-07-07

  修回日期: 2022-10-09

  网络出版日期: 2023-09-26

基金资助

第二次青藏高原综合科学考察研究项目(2019QZKK0103)

Influence of Different Water Vapor Sources on the Precipitation Processes on the Qinghai-XizangTibetPlateau in Summer

  • Changrui ZHU ,
  • Minhong SONG ,
  • Shaobo ZHANG ,
  • Longtengfei MA
Expand
  • Chengdu University of Information Technology/Sichuan Key Laboratory of Plateau Atmosphere and Environment,Chengdu 610225,Sichuan,China

Received date: 2022-07-07

  Revised date: 2022-10-09

  Online published: 2023-09-26

摘要

基于对青藏高原夏季水汽来源主要为阿拉伯海、 孟加拉湾和南海三地的认知, 开展了不同水汽源地对青藏高原夏季东部型和西部型降水影响的模拟研究。利用常规观测资料、 NCEP/NCAR全球再分析资料以及中尺度数值模式WRF对2016年6月28日至7月2日(东部型)和2018年7月19 -23日(西部型)青藏高原上两次强降水过程进行了不同水汽源地水汽含量减少的数值模拟试验, 通过将阿拉伯海、 孟加拉湾和南海三地的相对湿度分别由地面至100 hPa依次减少70%、 60%、 50%、 40%、 30%三组敏感性试验和控制性试验的对比, 从环流场、 水汽输送及降水变化等角度深入探讨不同水汽源地水汽含量的减少对高原夏季降水的影响, 得到以下主要结论: (1)三个水汽源地水汽含量的减少对青藏高原夏季降水有影响且影响程度不同, 其中减少孟加拉湾上空水汽, 使2016年(东部型)和2018年(西部型)青藏高原夏季降水量相较于控制性试验显著下降约10%, 而减少南海上空水汽对两次高原夏季降水过程影响极小。减少阿拉伯海上空水汽对高原西部型降水起促进作用, 降水量相对于控制性试验增加约10%; 对高原东部型降水抑制作用, 使得降水量相较于控制性试验减少约5%。(2)改变孟加拉湾水汽源地的水汽条件对高原降水影响最明显, 可能的原因是减少孟加拉湾上空水汽条件, 使得高原南侧的低值系统有所减弱, 高原上偏南风减弱, 水汽输送较弱, 致使高原上的降水减少。(3)在模拟初期控制性试验和三个敏感性试验的高原地区水汽收支差异不明显, 但随着模拟时间的增加(约48 h后), 青藏高原地区水汽收支存在明显差异, 且水汽收支情况与日降水量存在明显的相关关系。

本文引用格式

朱昌睿 , 宋敏红 , 张少波 , 马龙腾飞 . 不同水汽源地对夏季青藏高原降水过程影响的模拟研究[J]. 高原气象, 2023 , 42(5) : 1129 -1143 . DOI: 10.7522/j.issn.1000-0534.2022.00092

Abstract

Based on the knowledge that the main sources of summer water vapor on the Qinghai-Xizang (Tibet) Plateau are the Arabian Sea, the Bay of Bengal, and the South China Sea, a simulation study of the effects of different water vapor sources on the eastern-type and western-type precipitation on the Qinghai-Xizang (Tibet) Plateau in summer was carried out.Numerical simulations of water vapor content reduction at different water vapor source locations were conducted using conventional observations, NCEP/NCAR global reanalysis data, and the mesoscale numerical model WRF for two intense precipitation processes on the Qinghai-Xizang (Tibet) Plateau from June 28 to July 2, 2016 (eastern type) and from July 19 to 23, 2018 (western type), by separately integrating the Arabian Sea, Bay of Bengal, and South China Sea By comparing three sets of sensitivity experiment and control experiment, the relative humidity at the Arabian Sea, the Bay of Bengal and the South China Sea was reduced by 70%, 60%, 50%, 40% and 30% from the ground to 100hPa respectively, and the effects of the reduction of water vapor content at different water vapor sources on summer precipitation on the plateau were explored in depth from the perspectives of circulation field, water vapor transport and precipitation changes, and the following main conclusions were obtained: (1) The reduction of water vapor content at three water vapor sources has an effect on The reduction of water vapor over the Bay of Bengal significantly reduced the summer precipitation of the Qinghai-Xizang (Tibet) Plateau by about 10% in 2016 (eastern type) and 2018 (western type) compared with the controlled experiment, while the reduction of water vapor over the South China Sea had minimal effects on the two summer precipitation processes of the Qinghai-Xizang (Tibet) Plateau.Reducing the water vapor over the Arabian Sea plays a catalytic role in the precipitation of the western type of the plateau, increasing the precipitation by about 10% relative to the controlled test; and inhibiting the precipitation of the eastern type of the plateau, making the precipitation decrease by about 5% relative to the controlled test.(2) Changing the water vapor conditions over the Bay of Bengal source has the most obvious effect on the precipitation on the Qinghai-Xizang (Tibet) Plateau.The possible reason is that reducing the water vapor conditions over the Bay of Bengal makes the low value system on the southern side of the plateau weaken, and the southerly wind on the plateau weakens, resulting in weaker water vapor transport, resulting in less precipitation on the plateau.(3) The difference of water vapor revenue and expenditure in the plateau region was not obvious in the control experiment and three sensitivity experiment at the beginning of the simulation, but with the increase of simulation time (after about 48 h), there were obvious differences in water vapor revenue and expenditure in the Qinghai-Xizang (Tibet) Plateau, and there was an obvious correlation between water vapor revenue and expenditure and daily precipitation.

参考文献

null
Leung L R Qian Y2003.The sensitivity of precipitation and snow pack simulations to model resolution via nesting in regions of complex terrain[J].Journal of Hydrometeorology4(6): 1025-1043.
null
Li X P Wang L Guo X Y, et al, 2017.Does summer precipitation trend over and around the Tibetan Plateau depend on elevation?[J].International Journal of Climatology, 37: 1278-1284.
null
Yang K Ye B S Zhou D G, et al, 2011.Response of hydrological cycle to recent climate changes in the Tibetan Plateau[J].Climatic Change109(3/4): 517-534.
null
蔡英, 钱正安, 吴统文, 等, 2004.青藏高原及周围地区大气可降水量的分布、 变化与各地多变的降水气候[J].高原气象23(1): 1-10.
null
曾勇, 杨莲梅, 张迎新, 2017.新疆西部一次大暴雨过程水汽输送轨迹模拟[J].沙漠与绿洲气象11(3): 47-54.DOI: 10. 12057/j.issn.1002-0799.2017.03.007 .
null
曾钰婷, 张宇, 王煕曌, 等, 2022.2014 年夏季一次那曲强降水的诊断分析和水汽来源的模拟研究[J].高原气象41(2): 477-488.DOI: 10.7522/j.issn.1000-0534.2021.00077 .
null
曾钰婷, 张宇, 周可, 等, 2020.青藏高原那曲地区夏季水汽来源及输送特征分析[J].高原气象39(3): 467-476.DOI: 10.7522/j.issn.1000-0534.2019.00120 .
null
次仁达娃, 拥珠卓嘎, 仓啦, 等, 2016.南亚高压对西藏夏季降水的影响[J].西藏科技 (5): 67-69, 76.
null
德庆曲珍, 洛松卓玛, 高华, 等, 2021.WRF模式积云对流方案对拉萨市一次强降水的拟研究[J].西藏科技 (12): 12-17, 29.
null
董宏昌, 周虹, 姚瑞, 2021.云微物理方案在高原低涡个例模拟中的应用效果分析[J].沙漠与绿洲气象15(6): 9-17.DOI: 10. 12057/j.issn.1002-0799.2021.06.00 .
null
冯蕾, 周天军, 2015.高分辨率MRI模式对青藏高原夏季降水及水汽输送通量的模拟[J].大气科学39(2): 385-396.DOI: 10. 3878/j.issn.1006-9895.1406.14125 .
null
侯文轩, 华维, 郭艺媛, 等, 2020.青藏高原那曲地区一次对流云降水的数值模拟[J].高原山地气象研究40(3): 18-28, DOI: 10.3969/j.issn.1674-2184·2020.03.00.
null
黄建平, 刘玉芝, 王天河, 等, 2021.青藏高原及周边地区气溶胶、 云和水汽收支研究进展[J].高原气象40(6): 1225-1240.DOI: 10.7522/j.issn.1000-0534.2021.zk012 .
null
林厚博, 游庆龙, 焦洋, 等, 2016.青藏高原及附近水汽输送对其夏季降水影响的分析[J].高原气象35(2): 309-317.DOI: 10. 7522/j.issn.1000-0534.2014.00146 .
null
刘菊菊, 游庆龙, 王楠, 2019.青藏高原夏季云水含量及其水汽输送年际异常分析[J].高原气象38(3): 449-459.DOI: 10.7522/j.issn.1000-0534.2018.00138 .
null
刘煜, 刘蓉, 王欣, 等, 2022.基于拉格朗日方法评估青藏高原若尔盖地区水汽输送特征[J].高原气象41(1): 58-67.DOI: 10. 7522/ j.issn.1000-0534.2021.00100 .
null
鲁春霞, 王菱, 谢高地, 等, 2007.青藏高原降水的梯度效应及其空间分布模拟[J].山地学报25(6): 655 -663.
null
吕光辉, 于恩涛, 向伟玲, 等, 2009.WRF模式分辨率对新疆异常降雨天气要素模拟的影响[J].气候与环境研究14(1): 85-96.
null
索朗央金, 赵永丽, 次仁央金, 等, 2021.WRF模式对东亚夏季风的模拟评估[J].西藏科技, (12): 58-66, 80.
null
汤秋鸿, 刘宇博, 张弛, 等, 2020.青藏高原及其周边地区降水的水汽来源变化研究进展[J].大气科学学报43(6): 1002-1009.
null
王子谦, 段安民, 吴国雄, 2014.边界层参数化方案及海气耦合对WRF模拟东亚夏季风的影响[J].地球科学44(3): 548-562.
null
吴国雄, 毛江玉, 段安民, 等, 2004.青藏高原影响亚洲夏季气候研究的最新进展[J].气象学报62(5): 528-540.
null
吴国雄, 刘屹岷, 何编, 等, 2018.青藏高原感热气泵影响亚洲夏季风的机制 [J].大气科学42 (3): 488–504.
null
吴遥, 李跃清, 蒋兴文, 等, 2015.两种边界层参数化方案对WRF模拟青藏高原2013年夏季降水的影响[J].高原山地气象研究35(2): 7-16.DOI: 10.3969/j.issn.1674-2184 ·2015.02.002.
null
吴遥, 李跃清, 蒋兴文, 等, 2017.WRF模拟青藏高原东南部极端旱涝年降水的参数敏感性研究[J].高原气象36(3): 619-631.DOI: 10 , 7522/j.issn.1000-0534.2016.00057.
null
许建玉, 王慧娟, 李宏毅, 2014.夏季青藏高原地区水汽收支的初步模拟分析[J].高原气象33(5): 1173-1181.DOI: 10.522/j.issn.1000-0534.2013.0117 .
null
许鲁君, 刘辉志, 徐祥德, 等, 2018.WRF模式对青藏高原那曲地区大气边界层模拟适用性研究[J].气象学报76(6): 955-967.
null
杨显玉, 吕雅琼, 文军, 等, 2022.三江源区域夏季降水异常的水汽输送及源地特征的研究[J].高原气象41(2): 465-476.DOI: 10.7522/j.issn.1000-0534.2022.00015 .
null
姚檀栋, 朱立平, 2006.青藏高原环境变化对全球变化的响应及其适应对策[J].地球科学进展21(5): 459-464.
null
周长艳, 蒋兴文, 李跃清, 等, 2009.高原东部及邻近地区空中水汽资源的气候变化特征[J].高原气象28(1): 55-63.
文章导航

/