论文

基于CMIP6青藏高原腹地气候模拟评估及时空分析

  • 张春雨 ,
  • 刘爱利 ,
  • 吕嫣冉 ,
  • 姜彤 ,
  • 孙敏
展开
  • 南京信息工程大学地理科学学院,江苏 南京 210044

张春雨(1999 -), 女, 河南开封人, 硕士研究生, 主要从事GIS空间分析及气象应用研究. E-mail:

收稿日期: 2022-08-04

  修回日期: 2022-12-01

  网络出版日期: 2023-09-26

基金资助

国家自然科学基金项目(42001051); 第二次青藏高原综合科学考察项目(2019QZKK0201)

Spatial-temporal Analysis and Assessment of CMIP6 based Climate Simulation over the Qinghai-XizangTibetPlateau's Hinterland

  • Chunyu ZHANG ,
  • Aili LIU ,
  • Yanran Lü ,
  • Tong JIANG ,
  • Min SUN
Expand
  • School of Geography Science,Nanjing University of Information Science and Technology,Nanjing 210044,Jiangsu,China

Received date: 2022-08-04

  Revised date: 2022-12-01

  Online published: 2023-09-26

摘要

基于CN05.1观测数据集, 评估了CMIP6数据在青藏高原腹地气温、 降水模拟能力, 预估了其5种气候模式7种情景在2015 -2100年的气温降水状况。研究表明: (1)历史时期(1961 -2014年)CMIP6数据气温降水观测值与模拟值偏差不大, 时空相关性强。(2)未来时期, 年均气温和降水整体呈现上升趋势, SSP3-7.0和SSP5-8.5情景2021 -2100年气温距平和降水量距平百分比增幅较大。气温距平高值区集中分布在柴达木盆地, 降水距平百分比高值区处于东南部澜沧江发源处。(3)四季中SSP5-8.5情景气温增幅最大; SSP3-7.0情景降水量夏季和冬季增幅最快, SSP5-8.5情景降水量春季和秋季增幅最快。(4)除SSP1-1.9外, 从近期到末期各情景气温均具有很强的时空相似性; 降水增幅夏季增幅最大, 冬季增幅最小, 具有很强的季节性和区域性差异。

本文引用格式

张春雨 , 刘爱利 , 吕嫣冉 , 姜彤 , 孙敏 . 基于CMIP6青藏高原腹地气候模拟评估及时空分析[J]. 高原气象, 2023 , 42(5) : 1144 -1159 . DOI: 10.7522/j.issn.1000-0534.2022.00104

Abstract

The hinterland of the Qinghai-Xizang (Tibet) Plateau is affected by two major circulation systems, Westerly Wind and Indian Ocean monsoon.The average altitude of the region is high, and the terrain is complex and changeable.It is extremely complicated that the temperature and precipitation conditions in this region as a comparison to other areas of the Qinghai-Xizang (Tibet) Plateau.In order to accurately obtain the temporal and spatial changes of temperature and precipitation in this region and predict future temperature and precipitation changes, based on the CN05.1 observation dataset, the ability of CMIP6 data to simulate temperature and precipitation in the hinterland of the Qinghai-Xizang (Tibet) Plateau was evaluated.CMIP6 was corrected using Spatial Disaggregation and Equidistant Cumulative Distribution Functions Method Temperature and precipitation conditions of 5 climate models and 7 scenarios in 2015-2100 were estimated.The results show that: (1) In the historical period (from 1961 to 2014), the temperature and precipitation observation values of CMIP6 data have little deviation from the simulation values, and have strong space-time correlation.(2) In the future (from 2021 to 2100), the annual average temperature and precipitation will show an overall upward trend.The percentage of temperature anomaly and precipitation anomaly in 2021-2100 of SSP3-7.0 and SSP5-8.5 scenarios increased significantly.The high value of temperatures anomaly is concentrated in the Qaidam Basin, and the high value of precipitation anomaly is located at the source of the Lancang River in the southeast.(3) In the future, the temperature will continue to increase in the four seasons, the precipitation will also show an overall trend of rise in four seasons.However, the degree of precipitation increase is distinct in different seasons and different scenarios.In the four seasons, the temperature increase of SSP5-8.5 scenario is the largest.The temperature of SSP5-8.5 scenario increases fastest in autumn; The precipitation of SSP3-7.0 scenario increases fastest in summer and winter, while that of SSP5-8.5 scenario increases fastest in spring and autumn.(4) Except for the SSP1-1.9 scenario, the temperature of each scenario from the recent period to the end of the period shows strong temporal and spatial similarity.Against to the historical period, the spatial distribution of temperature in spring and winter showed a consistently rising tendency is similar, and that in summer and autumn is similar.The precipitation increase is the largest in summer and the smallest in winter.Compared with the historical period, the spatial distribution of precipitation anomaly percentage shows a strong seasonality and regional feature.The high value area is mainly distributed in the southeast of the study area.

参考文献

null
Guan X X Zhang J J Elmahdi A, et al, 2019.The capacity of the hydrological modeling for water resource assessment under the changing environment in semi-arid river basins in China[J].Water11(7): 1328.
null
Hao Z C Ju Q Jiang W J, et al, 2013.Characteristics and scenarios projection of climate change on the Tibetan Plateau[J].The Scientific World Journal, 2013: 129793.
null
Huang J L Zhai J Q Jiang T, et al, 2018.Analysis of future drought characteristics in China using the regional climate model CCLM[J].Climate Dynamics50(1): 507-525.
null
Lun Y R Liu L Cheng L, et al, 2021.Assessment of GCMs simulation performance for precipitation and temperature from CMIP5 to CMIP6 over the Tibetan Plateau[J].International Journal of Climatology41(7): 3994-4018.
null
陈炜, 姜大膀, 王晓欣, 2021.CMIP6模式对青藏高原气候的模拟能力评估与预估研究[J].高原气象40(6): 1455-1469.DOI: 10.7522/j.issn.1000-0534.2021.zk003 .
null
程国栋, 赵林, 2000.青藏高原开发中的冻土问题[J].第四纪研究20(6): 521-531.
null
韩林君, 白爱娟, 蒲学敏, 2022.基于CMIP6的祁连山气候变化特征预估[J].高原气象41(4): 864-875.DOI: 10.7522/j.issn. 1000-0534.2021.00037 .
null
何旭, 缪子梅, 田佳西, 等, 2022.基于CMIP6多模式的长江流域气温、 降水与径流预估[J/OL].南京林业大学学报(自然科学版): 1-10.[2022-11-01].
null
胡桃, 吕世华, 常燕, 等, 2022.CMIP6模式对青藏高原多年冻土变化的分析预估[J].高原气象41(2): 363-375.DOI: 10.7522/j.issn.1000-0534.2022.00009 .
null
黄子立, 吴小飞, 毛江玉, 2021.CMIP6模式水平分辨率对模拟我国西南地区夏季极端降水的影响评估[J].高原气象40(6): 1470-1483.DOI: 10.7522/j.issn.1000-0534.2021.zk010 .
null
冀钦, 杨建平, 陈虹举, 2018.1961-2015 年青藏高原降水量变化综合分析[J].冰川冻土40(6): 1090-1099.
null
姜彤, 吕嫣冉, 黄金龙, 等, 2020.CMIP6模式新情景(SSP-RCP)概述及其在淮河流域的应用[J].气象科技进展10(5): 102-109.
null
李晓英, 姚正毅, 肖建华, 等, 2016.1961-2010年青藏高原降水时空变化特征分析[J].冰川冻土38(5): 1233-1240.
null
李雅培, 朱睿, 刘涛, 等, 2021.基于BCC-CSM2-MR模式的疏勒河流域未来气温降水变化趋势分析[J].高原气象40(3): 535-546.DOI: 10.7522/j.issn.1000-0534.2020.00078 .
null
卢珊, 胡泽勇, 王百朋, 等, 2020.近56年中国极端降水事件的时空变化格局[J].高原气象39(4): 683-693.DOI: 10.7522/j.issn.1000-0534.2019.00058 .
null
吕嫣冉, 2021.“一带一路”区域极端高温事件与人口暴露度演变特征研究[D].南京: 南京信息工程大学.
null
陶辉, 黄金龙, 翟建青, 等, 2013.长江流域气候变化高分辨率模拟与RCP 4.5情景下的预估[J].气候变化研究进展9(4): 246-251.
null
吴佳, 高学杰, 2013.一套格点化的中国区域逐日观测资料及与其他资料的对比[J].地球物理学报56(4): 1102-1111.
null
吴金华, 盛芝露, 杜加强, 等, 2021.1956-2017年东北地区气温和降水的时空变化特征[J].水土保持研究28(3): 340-347+415.
null
吴国栋, 薛河儒, 刘廷玺, 2021.1961-2016年锡林河流域降水及平均气温变化特征及趋势[J].干旱区地理44(3): 769-777.
null
向竣文, 张利平, 邓瑶, 等, 2021.基于CMIP6的中国主要地区极端气温/降水模拟能力评估及未来情景预估[J].武汉大学学报(工学版)54(1): 46-57+81.
null
肖雨佳, 李建, 李妮娜, 2022.CMIP6 HighResMIP高分辨率气候模式对青藏高原降水模拟的评估[J].暴雨灾害41(2): 215-223.
null
许建伟, 高艳红, 彭保发, 等, 2020.1979-2016年青藏高原降水的变化特征及成因分析[J].高原气象39(2): 234-244.DOI: 10.7522/j.issn.1000-0534.2019.00029 .
null
徐蓉蓉, 梁信忠, 段明铿, 2021.CWRF对青藏高原气温和降水模拟效果的综合评估[J].大气科学学报44(1): 104-117.
null
姚檀栋, 朴世龙, 沈妙根, 等, 2017.印度季风与西风相互作用在现代青藏高原产生连锁式环境效应[J].中国科学院院刊32(9): 976-984.
null
张佳怡, 伦玉蕊, 刘浏, 等, 2022.CMIP6多模式在青藏高原的适应性评估及未来气候变化预估[J].北京师范大学学报(自然科学版)58(1): 77-89.
null
张庆杰, 陶辉, 苏布达, 等, 2021.基于CMIP6气候模式的新疆积雪深度时空格局研究[J].冰川冻土43(5): 1435-1445.
null
张玉兰, 康世昌, 史贵涛, 等, 2021.青藏高原冰川氮记录研究进展[J].冰川冻土43(1): 135-144.
null
赵梦霞, 苏布达, 姜彤, 等, 2021.CMIP6模式对黄河上游降水的模拟及预估[J].高原气象40(3): 547-558.DOI: 10.7522/j.issn.1000-0534.2020.00066 .
null
赵雪雁, 王亚茹, 张钦, 等, 2015.近50a青藏高原东部夏半年强降水事件的气候特征[J].干旱区地理38(4): 675-683.
null
周天军, 张文霞, 陈晓龙, 等, 2020.青藏高原气温和降水近期、 中期与长期变化的预估及其不确定性来源[J].气象科学40(5): 697-710.
文章导航

/