收稿日期: 2022-08-04
修回日期: 2022-12-01
网络出版日期: 2023-09-26
基金资助
中国气象局创新发展专项(CXFZ2021Z034); 山西省基础研究计划面上项目(202203021211080); 山西省气象局重点项目(SXKZDTQ20236301)
Macro and Micro Characteristics of Extreme Heavy Rainfall Process in Jincheng of Shanxi Province on 11 July 2021
Received date: 2022-08-04
Revised date: 2022-12-01
Online published: 2023-09-26
利用ERA5逐小时0.25°×0.25°再分析资料、 地面自动监测站以及FY-4A卫星、 多普勒雷达、 激光雨滴谱仪等精细化监测资料, 对2021年7月11日山西晋城极端强降水过程的宏微观特征进行分析。结果表明: (1)此次极端强降水是继1961年以来晋城7月降水出现的第二高极端降水; 高空急流入口区右侧强辐散、 低空急流出口区风速辐合、 低涡暖式切变线附近强辐合是极端强降水的宏观动力条件; 低空急流将水汽源源不断向极端强降水区输送, 整层大气可降水量高达65 mm以上是极端强降水发生的宏观水汽条件; 500 hPa高度槽超前700 hPa和850 hPa冷式切变线是此次极端强降水发生的宏观动力不稳定条件。(2)极端强降水落区位于500 hPa高度槽、 850 hPa和700 hPa暖切变线、 地面干线所围成的不规则四边形区域, 且与500 hPa T-Td≤4 ℃、 700 hPa T-Td≤3 ℃、 850 hPa T-Td≤2 ℃、 Ki指数≥38 ℃、 Si指数≤-1 ℃所控制的区域相重叠, 在对流云团西南侧亮温梯度的大值区和云团西南部的低亮温区, 即在地面干线和地面中尺度切变线0~30 km范围内极端降水量最大。(3)位于极端强降水区上空的中α尺度850 hPa暖式切变线与地面干线以及中β尺度的地面切变线和辐合线共同作用触发了晋城地区的极端强降水; 近地层加强的偏东气流在遇到中条山、 王屋山, 熊耳山、 嵩山形成的向东开口的喇叭口地形时被迫辐合抬升, 促使极端降水区辐合上升运动增强, 降水增幅。(4)闪电位于云顶亮温≤220 K的区域和云顶亮温梯度的大值区, 闪电频数峰值超前降水量峰值10~35 min, 这对降水峰值的预警很有意义。(5)中α尺度的低涡暖切变系统激发了中α尺度的低涡云系发展, 对流云团的发展演变为后向发展型, 在中α尺度低涡暖式切变线云系上有数个具有独立回波核的γ中尺度对流单体有组织地排列, 受西南气流引导向东北移动相继经过极端降水区形成列车效应; 造成蟒河景区最大雨峰的对流单体具有典型超级单体风暴结构特征。(6)云水含量的显著增大促使降水强度的增强, -20~0 ℃层过冷水含量大值区对应地面极端强降水区; 晋城极端降水为层、 积混合云降水, 雨滴粒径分布较广, 高浓度的小雨滴和中等雨滴是极端强降水的主要贡献者; 与典型大陆性对流降水过程相比, 此次极端强降水过程雨滴的平均广义截距常用对数[lg(Nw)]的平均范围大, 但质量加权平均直径(DM )较平均范围略小。
王洪霞 , 苗爱梅 , 邱贵强 , 屈志勇 , 杨俊梅 , 吕林宜 . “0711”山西晋城极端强降水过程的宏微观特征分析[J]. 高原气象, 2023 , 42(5) : 1232 -1246 . DOI: 10.7522/j.issn.1000-0534.2022.00103
Using ERA5 reanalysis data, automatic weather station data, FY4A satellite data, Doppler radar and Laser raindrop spectrometer data, the macro and micro characteristics of the extreme rainfall process in Jincheng, Shanxi Province on July 11, 2021 are analyzed. The results show that: (1) This extreme rainfall in Jincheng is the second highest rainfall in July since 1961. The strong divergence on the right of the upper jet entrance, the convergence of wind speed at the exit of lower jet, and the strong convergence near the warm shear line of the low vortex are the macro dynamic conditions of the extreme rainfall. The water vapor transfer by the low-level jet and the whole layer precipitable water above 65 mm, are the macro water vapor conditions, while 500 hPa trough is ahead of the cold shear lines on 700 hPa and 850 hPa is the macro dynamic unstable condition for this extreme heavy rainfall. (2) The extreme heavy rainfall is located in an irregular quadrilateral area surrounded by 500 hPa trough, 850 hPa and 700 hPa warm shear lines and ground dry line, which overlaps with the areas controlled by 500 hPa T-Td≤4 ℃, 700 hPa T-Td≤3 ℃, 850 hPa T-Td≤2 ℃, K index≥38 ℃ and Si index≤-1 ℃. The maximum extreme precipitation occurs in the large value area of the brightness temperature gradient on the southwest side of the convective cloud cluster and the low brightness temperature area in the southwest of the cloud cluster, which is within 0~30 km of the surface dry line and surface mesoscale shear lines. (3) The meso-α-scale warm shear line on 850 hPa, ground dry line and meso-β-scale surface shear lines and convergence lines triggered this extreme heavy rainfall in Jincheng. The strengthened easterly air flow on the surface layer is forced to converge and lift when it meets the trumpet shaped terrain opening eastward formed by Zhongtiao Mountain, Wangwu Mountain, Xionger Mountain and Song Mountain, promoting the convergence and rising movement in extreme precipitation areas and increasing the precipitation. (4) The lightning is located in the area where the cloud top brightness temperature is ≤220 K and the large value area of cloud top brightness temperature gradient. The peak value of lightning frequency is 10~35 minutes ahead of the peak value of precipitation, which is very significant for early warning of precipitation peak value. (5) The meso-α-scale low vortex warm shear system stimulates the development of the meso-α-scale vortex cloud system. The development and evolution of convective cloud clusters are backward development type. In the meso-α-scale vortex warm shear line cloud system, there are several organized meso-γ-scale convective cells with independent echo, which are guided by the southwest air flow moving to the northeast and form a train effect in the extreme precipitation area. The convective cell that leads to the largest rain peak in Manghe scenic area has the typical supercell storm structural characteristics. (6) The significant increase of cloud water content promotes the enhancement of precipitation intensity, and the high area of supercooled water content in -20~0 ℃ layer corresponds to the extremely heavy precipitation area on the ground. The extreme precipitation in Jincheng is stratiform and cumulus mixed cloud precipitation, and the particle size distribution of raindrops is wide. Small and medium raindrops with high concentration are the main contributors of extreme heavy precipitation. Compared with the typical continental convective precipitation process, the average range of the average generalized intercept common logarithm (lg(NW )) of raindrops in this extreme heavy precipitation process is large, but the mass weighted average diameter (DM ) is slightly smaller than the average range.
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | 丛芳, 刘黎平, 2011.新一代天气雷达与地面雨量资料的综合分析[J].气象, 37(5): 532-539. |
null | 傅佩玲, 胡东明, 张羽, 等, 2018. 2017年5月7日广州特大暴雨微物理特征及其触发维持机制分析[J].气象, 44(4): 500-510. |
null | 李哲, 高艳红, 蒋盈沙, 等, 2022. 城市与湖泊对华东地区一次切变线暴雨过程的影响[J]. 高原气象, 41(3): 655-670. DOI: 10. 7522/j. issn. 1000-0534. 2021. 00067 . |
null | 刘红武, 胡燕, 苏涛, 等, 2021. 2019年主汛期湖南两次致灾暴雨过程对比分析[J]. 高原气象, 40(5): 1101-1114. DOI: 10. 7522/j. issn. 1000-0534. 2020. 00087 . |
null | 刘红燕, 雷恒池, 2006.基于地面雨滴谱资料分析层状云和对流云降水的特征[J].大气科学, 30(4): 693-702. |
null | 刘西川, 高太长, 刘磊, 等, 2014.基于粒子成像测速技术的雨滴微物理特性研究[J].物理学报, 63(2): 292-303. |
null | 刘晓阳, 杨洪平, 李建通, 等, 2010.新一代天气雷达定量降水估测集成系统[J].气象, 36(4): 90-95. |
null | 柳臣中, 周筠臖, 谷娟, 等, 2015.成都地区雨滴谱特征[J].应用气象学报, 26(1): 112-121. |
null | 卢珊, 胡泽勇, 付春伟, 等, 2022. 黄土高原夏季极端降水及其成因分析[J]. 高原气象, 41(1): 241-254. DOI: 10. 7522/j. issn. 1000-0534. 2021. 00027 . |
null | 罗俊颉, 贺文彬, 李金辉, 等, 2012.2003年春季陕西省层状云降水的雨滴谱特征[J].气象, 38(9): 1129-1134. |
null | 明虎, 王敏仲, 阮征, 等, 2014.风廓线雷达对天山中部一次层状云降水过程的探测分析[J].气象, 40(12): 1513-1521. |
null | 牛若芸, 刘凑华, 刘为一, 等, 2018. 1981-2015年中国95°E以东区域性暴雨过程时、 空分布特征[J]. 气象学报, 76(2): 182-195. |
null | 史月琴, 高松影, 孙晶, 等, 2022. 辽宁一次区域性暴雨的特征条件与成因分析[J]. 高原气象, 41(3): 630-645. DOI: 10. 7522/j. issn. 1000-0534. 2021. 00094 . |
null | 王可法, 张卉慧, 张伟, 等, 2011.Parsivel激光雨滴谱仪观测降水中异常数据的判别及处理[J].气象科学, 31(6): 732-736. |
null | 徐珺, 毕宝贵, 谌芸, 等, 2018. “5·7”广州局地突发特大暴雨中尺度特征及成因分[J].气象学报, 76(4): 511-524. |
null | 杨晓军, 叶培龙, 徐丽丽, 等, 2022. 一次青藏高原东北侧边坡强对流暴雨的中尺度对流系统演变特征[J]. 高原气象, 41(4): 839-849. DOI: 10. 7522/j. issn. 1000-0534. 2021. 00023 . |
null | 杨晓亮, 王秀明, 杨敏, 等, 2022. 副热带高压控制下河北局地强降水触发与维持机制分析[J].气象, 48(6): 677-690. |
null | 钟敏, 车钦, 张蒙蒙, 等, 2020. 华中区域极端降水天气形势及物理量异常度特征[J].气象, 46(4): 503-516. |
null | 周旋, 孙继松, 张琳娜, 等, 2022. 华北地区持续性极端暴雨过程的分类特征[J].气象学报, 78(5): 761-777. |
null | 朱亚乔, 刘元波, 2013.地面雨滴谱观测技术及特征研究进展[J].地球科学进展, 28(6): 685-694. |
/
〈 |
|
〉 |