论文

郑州“7·20”特大暴雨雨滴谱特征分析

  • 王俊 ,
  • 陈宝君 ,
  • 周淑玲 ,
  • 刘畅
展开
  • 1. 山东省气象防灾减灾重点实验室,山东 济南 250031
    2. 山东省人民政府人工影响天气办公室,山东 济南 250031
    3. 中国气象局云雾物理环境重点开放实验室,中国气象局人工影响天气中心,北京 100081
    4. 威海市气象局,山东 威海 264200
    5. 山东省气象台,山东 济南 250031

王俊(1966 -), 男, 山东平度人, 正研级高工, 主要从事云降水物理研究. E-mail:

收稿日期: 2022-05-27

  修回日期: 2022-09-28

  网络出版日期: 2023-09-26

基金资助

华东区域气象科技协同创新基金项目(QYHZ201812); 山东省气象局课题(2018sdqx12)

Analyzing the Characteristics of Raindrop Size Distributions of the7·20Torrential Rain in Zhengzhou on 20 July 2021

  • Jun WANG ,
  • Baojun CHEN ,
  • Shuling ZHOU ,
  • Chang LIU
Expand
  • 1. Key Laboratory for Meteorological Disaster Prevention and Mitigation of Shandong,Jinan 250031,Shandong,China
    2. Shandong Institute of Meteorological Sciences,Jinan 250031,Shandong,China
    3. Key Laboratory for Cloud Physics of China Meteorological Administration,Chinese Academy of Meteorological Sciences,Beijing 10081,China
    4. Weihai Meteorological Bureau,Weihai 264200,Shandong,China
    5. Shandong Meteorological Observatory,Jinan 250031,Shandong,China

Received date: 2022-05-27

  Revised date: 2022-09-28

  Online published: 2023-09-26

摘要

暴雨的发生是多尺度条件和宏微观物理过程相互作用的结果, 对暴雨降水微物理特征的分析是研究暴雨形成机制的重要一环。2021年7月20日15:25 -17:27(北京时, 下同)一强中尺度对流系统影响郑州, 累积降水量312.1 mm, 简称为极端暴雨降水。除极端暴雨降水时段, 20日08:00 -20:00其他时间累积降水量183.4 mm, 简称为暴雨降水。本文利用郑州降水现象仪观测资料, 对比分析了极端暴雨和暴雨降水的雨滴谱和积分参数特征, 主要结论为: (1)暴雨对流降水不同雨强的平均雨滴谱随着雨强增大, 直径D小于1.0 mm的小雨滴数密度增加得较少, 中等(1.0<D≤3.0 mm)和大(D>3.0 mm)直径雨滴数密度增加得较快; 极端暴雨不同雨强平均雨滴谱随着雨强增大, 各直径档雨滴数密度都明显增大, 同时平均雨滴谱粒子数密度之间的差异比较复杂, 有时小雨滴数密度差别大, 有时较大雨滴数密度差别大, 不同雨强平均雨滴谱之间的差异导致参数随着雨强增大的变化特征有显著不同。暴雨参数D m(lgN w)随着雨强增大而逐渐增大(稍微增大), 表明粒子直径的增大是暴雨降水雨强增大的主要因素, 粒子浓度的增加是次要因素。极端暴雨降水参数D m(lgN w)随着雨强增大的变化趋势有不同的变化特征, 指示极端暴雨降水不同雨强雨滴谱的形成机制可能存在不同。(2)参数lgN w-D m分布显示, 暴雨和极端暴雨对流降水雨滴谱都是以大陆性对流降水为主, 暴雨对流性降水雨滴谱形成机制主要是暖雨-冰相混合和少量冰相控制; 而极端暴雨降水雨强小于100 mm·h-1时雨滴谱形成机制主要是暖雨-冰相混合和冰相控制, 雨强大于100 mm·h-1时雨滴谱形成机制主要是暖雨-冰相混合。(3)暴雨降水中存在少量平衡雨滴谱(约占2.8%)和较大比例的过渡谱(约占60.5%)。极端暴雨降水中没有平衡谱, 但过渡谱有极高比例(约占83.9%), 表明雨滴破碎过程在极端暴雨降水中有更广泛的作用。

本文引用格式

王俊 , 陈宝君 , 周淑玲 , 刘畅 . 郑州“7·20”特大暴雨雨滴谱特征分析[J]. 高原气象, 2023 , 42(5) : 1247 -1259 . DOI: 10.7522/j.issn.1000-0534.2022.00089

Abstract

The microphysical characteristics is important for the formation mechanism of rainstorm which is the result of multi-scale conditions and the interactions of macro and micro physical processes.From 15:25 (Beijing Time, the same as after) to 17:27 on July 20, 2021, a strong mesoscale convective system affected Zhengzhou, and the accumulated precipitation was 312.1 mm, which was referred to as extreme rainstorm.Excluding the period of extremc rainstorm, from 08:00 to 20:00 on the July 20, the accumulated precipitation was 183.4 mm, which is referred to as rainstorm.Based on the observations data of disdrometer at Zhengzhou station, the characteristics of raindrop size distributions(DSDs) and integral parameters of extreme rainstorm and rainstorm are analyzed.The results showed that: (1)In rainstorm, the average DSDs increased with the increase of rain rate.The concentrations of diameter less than 1 mm increased less, and concentrations of large diameter which is greater than 2 mm increased faster.In extreme rainstorm, the average DSDs increased with the increase of rain rate, and the concentrations of each diameter increased significantly.Meanwhile, the differences between the concentrations of average DSDs at different rain rate were complex.Somewhile there were distinct differences in the concentrations of small raindrops, and there were also great differences in the concentrations of large raindrops.The differences of average DSDs of different rain rate categories lead to different parameters variation with the increase of rain rate.For rainstorm, the D m increased with the increase of rain rate, while lgN w increased slightly, indicating that the main source for the increase of rainstorm intensity was the increase of particle diameter, and the secondary factor was increase of particle concentrations.For extreme rainstorm, when the rain rate was between 50 and 100 mm·h-1D m(lgN w) increased (decreased) with the increase of rain rate, while the rain rate was greater than 100 mm·h-1D m and lgN w increased slightly with the increase of rain rate, suggesting that the formation mechanisms of DSD in different rain rate categories of extreme rainstorm may be different.(2)The distribution of lgN w-D m showed that the DSDs of rainstorm were mainly continental-like, and its formation mechanism was mainly warm-ice mixture process and a small amount of ice-based process.The scatter plot of lgN w-D m ofextreme rainstorm with rain rate less than 100 mm·h-1 mainly clustered on the upper and right side of the continental-like area, and the formation mechanism of extreme rainstorm was mainly warm-ice mixture process and ice-based process; the scatter plot of lgN w-D m of extreme rainstorm with rain rategreater than 100 mm·h-1were mainly distributed on the upperside of the continental -like area, and the formation mechanism was mainly warm-ice mixture process.(3)There were a small proportion(about 2.8%)of the equilibrium raindrop size distribution(EDSD) and a large proportion (about 60.5%)of transition DSDs in rainstorm.There was no EDSD in the extreme rainstorm, while the transition DSDs had a very high proportion (about 83.9%), indicating that the breakup process played a much more role in the extreme rainstorm.

参考文献

null
Battaglia A Rustemeier E Tokay A, et al, 2010.PARSIVEL snow observations: a critical assessment[J].Journal of Atmospheric and Oceanic Technology27(2): 333-344.DOI: https: //doi.org/10.1175/2009JTECHA1332.1 .
null
Bringi V N Chandrasekar V Hubbert J, et al, 2003.Raindrop size distribution in different climatic regimes from disdrometer and dual-polarized radar analysis[J].Journal of the Atmospheric Sciences60(2): 354-365.DOI: https: //doi.org/10.1175/1520-0469(2003)060<0354: RSDIDC>2.0.CO; 2 .
null
Bringi V N Williams C R Thurai M, et al, 2009.Using dual-polarized radar and dual-frequency profiler for DSD characterization: a case study from Darwin, Australia[J].Journal of Atmospheric and Oceanic Technology26(10): 2107-2122.DOI: https: //doi.org/10.1175/2009JTECHA1258.1 .
null
Blanchard D C Spencer A T1970.Experiments on the generation of raindrop-size distribution by drop breakup[J].Journal of the Atmospheric Sciences27(1): 101-108.DOI: https: //doi.org/10.1175/1520-0469(1970)027<0101: EOTGOR>2.0.CO; 2 .
null
Chen B J Yang J Pu J P2013.Statistical characteristics of raindrop size distribution in the Meiyu season observed in eastern China[J].Journal of the Meteorological Society of Japan91 (2): 215-227.DOI: https: //doi.org/10.2151/jmsj.2013-208 .
null
D'Adderio L P Porcù F Tokay A2015.Identification and analysis of collisional break-up in natural rain[J].Journal of the Atmospheric Sciences72(9): 3404-3416.DOI: https: //doi.org/10.1175/JAS-D-14-0304.1 .
null
D'Adderio L P Porcù F Tokay A2018.Evolution of drop size distribution in natural rain[J].Atmospheric Research, 200: 70-76.DOI: https: //doi.org/10.1016/j.atmosres.2017.10.003 .
null
Dolan B Fuchs B Rutledge S A, et al, 2018.Primary modes of global drop-size distributions[J].Journal of the Atmospheric Sciences75(5): 1453-1476.DOI: https: //doi.org/10.1175/JAS-D-17-0242.1 .
null
Friedrich K Kalina E A Aikins J A, et al, 2016.Raindrop size distribution and rain characteristics during the 2013 great Colorado flood[J].Journal of Hydrometeorology17(1): 53-72.DOI: https: //doi.org/10.1175/JHM-D-14-0184.1 .
null
Fulton R A Breidenbach J P Seo D J, et al, 1998.The WSR-88D rainfall algorithm[J].Weather and Forecasting13(2): 377-395.DOI: https: //doi.org/10.1175/1520-0434(1998)013<0377: TWRA>2.0.CO; 2 .
null
Fu Z K Dong X Q Zhou L L, et al, 2020.Statistical characteristics of raindrop size distributions and parameters in Central China during the Meiyu seasons[J].Journal of Geophysical Research: Atmospheres125(19): e2019JD031954.
null
Han Y Guo J P Yun Y X, et al, 2021.Regional variability of summertime raindrop size distribution from a network of disdrometers in Beijing[J].Atmospheric Research, 257 (2021) 105591.
null
Hu Z Srivastava R C1995.Evolution of raindrop size distribution by coalescence, breakup, and evaporation: theory and observation[J].Journal of the Atmospheric Sciences52(10): 1761-1783.
null
Jaffrain J Berne A2011.Experimental quantification of the sampling uncertainty associated with measurements from PARSIVEL disdrometers[J].Journal of Hydrometeorology12(3): 352-370.
null
L?ffler-Mang M Joss J2000.An optical disdrometer for measuring size and velocity of hydrometeors[J].Journal of Atmospheric and Oceanic Technology17(2): 130-139.
null
McFarquhar GM2004.A new representation of collision-induced breakup of raindropsand its implications for the shapes of raindrop size distributions[J].Journal of the Atmospheric Sciences61(7): 777-794.
null
Porcù F D’Adderio L P Prodi F, et al, 2014.Rain drop size distribution over the Tibetan Plateau[J].Atmospheric Research150(150): 1-30.
null
Prat O P Barros A P Testik F Y2012.On the Influence of Raindrop Collision Outcomes on Equilibrium Drop Size Distributions[J].Journal of the Atmospheric Sciences69 (5): 1534-1546.
null
Sempere T Porra` D J Creutin J D1994.A general formulation for raindrop size distribution[J].Journal of Applied Meteorology and Climatology33(12): 1494-1502.
null
Sempere T Porra` D J Creutin J D1998.Experimental evidence of a general description of raindrop size distribution properties[J].Journal of Geophysical Research: Atmospheres103(D2): 1785-1797.
null
Straub W Behenga K, SeifertA, et al, 2010.Numerical investigation of collision-induced breakup of raindrops.Part II: Parameterizations of coalescence efficienciesand fragment size distributions[J].Journal of the Atmospheric Sciences67(3): 576-588.
null
Testud J Oury S Black R A, et al, 2001.The concept of “normalized” distribution to describe raindrop spectra: a tool for cloud physics and cloud remote sensing[J].Journal of Applied Meteorology and Climatology40(6): 1118-1140.
null
Uijlenhoet R Smith J A Steiner M2003.The microphysical structure of extreme precipitation as inferred from ground-based raindrop spectra[J].Journal of the Atmospheric Sciences60(10): 1220-1238.
null
Willis P T1984.Functional fits to some observed drop size dis tributions and parameterization of rain[J].Journal of the Atmospheric Sciences41(9): 1648-1661.
null
Willis P T Tattelman P1989.Drop-size distributions associated with intense rainfall[J].Journal of Applied Meteorology and Climatology28(1): 3-15.
null
Yuter S E Kingsmill D E Nance L B, et al, 2006.Observations of precipitation size and fall speed characteristics within coexisting rain and wet snow[J].Journal of Applied Meteorology and Climatology45(10): 1450-1464.
null
丁一汇, 2019.中国暴雨理论的发展历程与重要进展[J].暴雨灾害38(5): 395-406.DOI: 10.3969/j.issn.1004-9045.2019.05.001 .
null
冯璐, 陆海琦, 李丰, 等, 2020.广东地区一次飑线过程的地面雨滴谱特征分析[J].热带气象学报36(5): 626-637.DOI: 10. 16032/j.issn.1004-4965.2020.057 .
null
傅佩玲, 胡东明, 张羽, 等, 2018.2017年5月7日广州特大暴雨微物理特征及其触发维持机制分析[J].气象44(4): 500-510.DOI: 10.7519/j.issn.1000-0526.2018.04.003 .
null
高建秋, 阮征, 游积平, 等, 2015.广东东莞不同类型云的雨滴谱和降水特征[J].气象科技43(6): 1085-1094.DOI: 10.19517/j.1671-6345.2015.06.013 .
null
金祺, 袁野, 刘慧娟, 等, 2015.江淮之间夏季雨滴谱特征分析[J].气象学报73(4): 778-788.DOI: 10.11676/qxxb2015.036 .
null
李山山, 王晓芳, 万蓉, 等, 2020.青藏高原东坡不同海拔区域的雨滴谱特征[J].高原气象39(5): 899-911.DOI: 10.7522/j.issn.1000-0534.2019.00086 .
null
罗亚丽, 孙继松, 李英, 等, 2020.中国暴雨的科学与预报: 改革开放40年研究成果[J].气象学报78(3): 419-450.DOI: 10. 11676/qxxb2020.057 .
null
齐道日娜, 何立富, 王秀明, 等, 2022.“7·20”河南极端暴雨精细观测及热动力成因[J].应用气象学报33(1): 1-15.DOI: 10. 11898/10017313.20220101 .
null
秦大河, 2015.中国极端天气气候事件和灾害风险管理与适应国家评估报告[M].北京: 科学出版社.
null
苏爱芳, 吕晓娜, 崔丽曼, 等, 2021.郑州“7·20”极端暴雨天气的基本观测分析[J].暴雨灾害40(5): 445-454.DOI: 10.3969/j.issn. 1004-9045.2021.05.001 .
null
孙跃, 肖辉, 杨慧玲, 等, 2021.基于遥感数据光流场的2021年郑州“7·20”特大暴雨动力条件和水凝物输送特征分析[J].大气科学45(6): 1384-1399.DOI: 10.3878/j.issn.1006-9895. 2109.21155 .
null
王俊, 王文青, 王洪, 等, 2021a.短时强降水和冰雹云降水个例雨滴谱特征分析[J].高原气象40(5): 1071-1086.DOI: 10. 7522/j.issn.1000-0534.2020.00091 .
null
王俊, 王文青, 王洪, 等, 2021b.山东北部一次夏末雹暴地面降水粒子谱特征[J].应用气象学报32(3): 370-384.DOI: 10. 11898/1001-7313.20210309 .
null
肖现, 廖菲, 肖辉, 等, 2010.北京对流性降水的雨滴尺寸分布瞬时特征与雷达降水的关系[J].热带气象学报26(4): 445-451.DOI: 10.3969/j.issn.1004-4965.2010.04.008 .
null
谢媛, 陈钟荣, 戴建华, 等, 2015.上海地区几类强降水雨滴谱特征分析[J].气象科学35( 3): 353-361.DOI: 3969/2014jms.0046 .
null
杨成芳, 赵宇, 2021.基于加密观测的一次极端雨雪过程积雪特征分析[J].高原气象40( 4): 853-865.DOI: 10.7522/j.issn. 1000-0534.2020.00072 .
null
叶朗明, 徐碧裕, 刘显通, 等, 2021.2017 年广东西部一次暖区极端降水过程的维持机制及微物理特征[J].气候与环境研究26(3): 263-274.DOI: 10.3878/j.issn.1006-9585.2020.20028 .
null
朱红芳, 王东勇, 杨祖祥, 等, 2020.“海葵”台风(1211号)暴雨雨滴谱特征分析[J].暴雨灾害39(2): 167-175.DOI: 10.3969/j.issn.1004-9045.2020.02.007 .
null
卓鸿, 赵平, 任健, 等, 2011.2007年济南“7.18”大暴雨的持续拉长状对流系统研究[J].气象学报69(2): 263-276.
文章导航

/