论文

造成东北地区暴雪过程的温带气旋暖输送带特征研究

  • 白云飞 ,
  • 赵宇 ,
  • 李树岭 ,
  • 姚余辉
展开
  • 1. 南京信息工程大学气象灾害教育部重点实验室/气象灾害预报预警与评估协同创新中心/ 气候与环境变化国际合作联合实验室,江苏 南京 210044
    2. 黑龙江省哈尔滨市气象局,黑龙江 哈尔滨 150030
    3. 浙江省衢州市气象局,浙江 衢州 324000

白云飞(1998 -), 男, 山东临朐人, 硕士研究生, 主要从事中尺度气象学研究. E-mail:

收稿日期: 2022-07-04

  修回日期: 2022-12-08

  网络出版日期: 2023-09-26

基金资助

国家自然科学基金面上项目(41975055); 国家重点研发计划项目(2017YFC1502002)

Characteristics of Warm Conveyor Belts in Extratropical Cyclones Causing Snowstorms in Northeastern China

  • Yunfei BAI ,
  • Yu ZHAO ,
  • Shuling LI ,
  • Yuhui YAO
Expand
  • 1. Key Laboratory of Meteorological Disaster (KLMD),Ministry of Education and Jiangsu Province,Nanjing University of Information Science & Technology,Nanjing 210044,Jiangsu,China
    2. Harbin Meteorological Observatory,Harbin 150030,Heilongjiang,China
    3. Quzhou meteorological Bureau,Quzhou 324000,Zhejiang,China

Received date: 2022-07-04

  Revised date: 2022-12-08

  Online published: 2023-09-26

摘要

利用欧洲中期天气预报中心(European Center for Medium-Range Weather Forecasts, ECMWF)的ERA5再分析资料与拉格朗日分析工具(Largrangian analysis tool, LAGRANTO), 对2006 -2021年期间引发东北地区暴雪天气的温带气旋暖输送带进行统计, 研究了暖输送带对气旋和降水发展的作用及其与锢囚锋的关系。结果表明: (1)气旋的加深率与暖输送带强度有明显的正相关, 两者相关系数为0.63, 通过α=0.01的显著性检验。大部分气旋在迅速加深24 h期间锢囚, 以暖式锢囚为主。(2)强烈发展的锢囚型气旋通常具有强暖输送带, 暖输送带低空入流主要位于气旋中心和气旋暖区附近, 暖输送带的出流有两个分支: 一支上升至气旋西北侧高空, 另一支随高空西风带向气旋下游移动; 气旋锢囚阶段低空正位涡异常与高空正位涡异常相互作用, 形成贯穿整个对流层的位涡柱。(3)未锢囚或晚锢囚的气旋虽然有强暖输送带, 但缺少对流层上层的干侵入, 仅在低空有正位涡异常, 气旋发展较弱。弱的锢囚型气旋存在明显干侵入, 但暖输送带及降水均较弱。(4)具有强(弱)暖输送带的气旋造成的降水更多(少), 且降水落区与暖输送带分布有密切关系。移动到气旋中心附近的暖输送带气块对气旋的发展有重要作用, 其水平运动引起的暖平流及上升运动组织形成的低空非绝热位涡均能加强气旋式环流, 进而促进气旋发展。

本文引用格式

白云飞 , 赵宇 , 李树岭 , 姚余辉 . 造成东北地区暴雪过程的温带气旋暖输送带特征研究[J]. 高原气象, 2023 , 42(5) : 1271 -1284 . DOI: 10.7522/j.issn.1000-0534.2022.00108

Abstract

The role of warm conveyor belts (WCBs) on the development of cyclones and precipitation and their relationship to occluded fronts are investigated for extratropical cyclones causing snowstorms in northeastern China during 2006 -2021, using ERA5 reanalysis data and Lagrangian Analysis Tool (LAGRANTO).Main results show that: (1) The correlation coefficient of 0.63 which could pass significance test of α=0.01 implies strong correlation between cyclone intensification and WCB strength.Most of cyclones have occluded in the 24 h period of strongest deepening, and these occluded fronts are mainly warm-type occlusions.(2) Rapidly intensifying occluded cyclones typically have strong WCBs, which low-level inflow mainly locates in the center and warm sector of cyclones, while the outflow has two branches: some trajectories rise to the high levels northwest of the cyclone, and others ascend to the downstream of cyclone following the upper westerly winds; the interaction between low-level potential vorticity (PV) and upper-level PV in cyclone occluding stage eventually forms a PV tower throughout the troposphere.(3) Non-occluded cyclones also have strong WCBs and positive low-level PV anomalies, but lack of significant upper-level PV forcing.The development of these cyclones is weak.Weakly intensifying occluded cyclones have a PV tower, but their WCBs and precipitation are weak.(4) Cyclones with strong (weak) warm conveyor belts cause more (less) precipitation, and the distribution of rainfall is closely related to the location of warm conveyor belts.The WCB trajectories moving towards to cyclone center play an important role for cyclone development.The warm advection and low-level diabatic PV production generated by these trajectories both enhance the low-level circulation and contribute to the cyclone intensification.

参考文献

null
Binder H Boettcher M Joos H, et al, 2016.The role of warm conveyor belts for the intensification of extratropical cyclones in northern hemisphere winter[J].Journal of the Atmospheric Sciences73(10): 3997-4020.DOI: 10.1175/JAS-D-15-0302.1 .
null
Bjerknes J Solberg H1922.Life cycle of cyclones and the polar front theory of atmospheric circulation[J].Geophys Publik3(1): 1-18.DOI: 10.1002/qj.49704920609 .
null
Browning K A1986.Conceptual models of precipitation systems[J].Weather and Forecasting1(1): 23-41.DOI: 10.1175/1520-0434(1986)001<0023: CMOPS>2.0.CO; 2 .
null
Browning K A Roberts N M1994.Structure of a frontal cyclone[J].Quarterly Journal of the Royal Meteorological Society120(520): 1535-1557.DOI: 10.1002/qj.49712052006 .
null
Carlson T N1980.Airflow through midlatitude cyclones and the comma cloud pattern[J].Monthly Weather Review108(10): 1498-1509.DOI: 10.1175/1520-0493(1980)108<1498: ATMCAT>2.0.CO; 2 .
null
Eckhardt S Stohl A Wernli H, et al, 2004.A 15-year climatology of warm conveyor belts[J].Journal of Climate17(1): 218-237.DOI: 10.1175/1520-0442(2004)017<0218: AYCOWC>2.0.CO; 2 .
null
Fuhrmann C M Konrad C E2013.A trajectory approach to analyzing the ingredients associated with heavy winter storms in central North Carolina[J].Weather and Forecasting28(3): 647-667.DOI: 10.1175/WAF-D-12-00079.1 .
null
Harrold T W1973.Mechanisms influencing the distribution of precipitation within baroclinic disturbances[J].Quarterly Journal of the Royal Meteorological Society99(420): 232-251.DOI: 10. 1002/qj.49709942003 .
null
Hoskins B J McIntyre M E Robertson A W1985.On the use and significance of isentropic potential vorticity maps[J].Quarterly Journal of the Royal Meteorological Society111(470): 877-946.DOI: 10.1002/qj.49711147002 .
null
Joos H Wernli H2012.Influence of microphysical processes on the potential vorticity development in a warm conveyor belt: a case‐study with the limited‐area model COSMO[J].Quarterly Journal of the Royal Meteorological Society138(663): 407-418.DOI: 10.1002/qj.934 .
null
Madonna E Wernli H Joos H, et al, 2014.Warm conveyor belts in the ERA-Interim dataset (1979-2010).part Ⅰ: climatology and potential vorticity evolution[J].Journal of Climate27(1): 3-26.DOI: 10.1175/JCLI-D-12-00720.1 .
null
Martínez‐Alvarado O Joos H Chagnon J, et al, 2014.The dichotomous structure of the warm conveyor belt[J].Quarterly Journal of the Royal Meteorological Society140(683): 1809-1824.DOI: 10.1002/qj.2276 .
null
Oertel A Boettcher M Joos H, et al, 2019.Convective activity in an extratropical cyclone and its warm conveyor belt-a case‐study combining observations and a convection‐permitting model simulation[J].Quarterly Journal of the Royal Meteorological Society145(721): 1406-1426.DOI: 10.1002/qj.3500 .
null
Pfahl S Madonna E Boettcher M, et al, 2014.Warm conveyor belts in the ERA-Interim dataset (1979-2010).part Ⅱ: moisture origin and relevance for precipitation[J].Journal of Climate27(1): 27-40.DOI: 10.1175/JCLI-D-13-00223.1 .
null
Rauber R M Macomber M K Plummer D M, et al, 2014.Finescale radar and airmass structure of the comma head of a continental winter cyclone: the role of three airstreams[J].Monthly Weather Review142(11): 4207-4229.DOI: 10.1175/MWR-D-14-00057.1 .
null
Reed R J Danielsen E F1958.Fronts in the vicinity of the tropopause[J].Archiv für Meteorologie, Geophysik und Bioklimatologie, A11: 1-17.DOI: 10.1007/BF02247637 .
null
Rossa A M Wernli H Davies H C2000.Growth and decay of an extra-tropical cyclone’s PV-tower[J].Meteorology and Atmospheric Physics73(3): 139-156.DOI: 10.1007/s007030050070 .
null
Sanders F Gyakum J R1980.Synoptic-dynamic climatology of the “bomb” [J].Monthly Weather Review108(10): 1589-1606.DOI: 10.1175/1520-0493(1980)108<1589: SDCOT>2.0.CO; 2 .
null
Schultz D M2001.Reexamining the cold conveyor belt[J].Monthly Weather Review129(9): 2205-2225.DOI: 10.1175/1520-0493(2001)129<2205: RTCCB>2.0.CO; 2 .
null
Schultz D M Vaughan G2011.Occluded fronts and the occlusion process: a fresh look at conventional wisdom[J].Bulletin of the American Meteorological Society92(4): 443-466.DOI: 10. 1175/2010BAMS3057.1 .
null
Schultz D M Bosart L F Colle B A, et al, 2019.Extratropical cyclones: a century of research on meteorology’s centerpiece[J].Meteorological Monographs, 59: 16.1-16.56.DOI: 10.1175/AMSMONOGRAPHS-D-18-0015.1 .
null
Shapiro M A Keyser D1990.Fronts, jet streams and the tropopause[C]//Newton C W, Holopainen E O, eds.Extratropical Cyclones, The Erik Palmén Memorial Volume.Boston: American Meteorological Society, 167-191.DOI: 10.1007/978-1-944970-33-8_10 .
null
Sprenger M Wernli H2015.The LAGRANTO Lagrangian analysis tool-version 2.0[J].Geoscientific Model Development8(8): 2569-2586.DOI: 10.5194/gmd-8-2569-2015 .
null
Thomas C M Schultz D M2019.What are the best thermodynamic quantity and function to define a front in gridded model output?[J].Bulletin of the American Meteorological Society100(5): 873-896.DOI: 10.1175/BAMS-D-18-0137.1 .
null
Utsumi N Kim H Seto S, et al, 2014.Climatological characteristics of fronts in the western north pacific based on surface weather charts[J].Journal of Geophysical Research (Atmospheres)119(15): 9400-9418.DOI: 10.1002/2014JD021734 .
null
Van der D M Knippertz P Zschenderlein P, et al, 2018.The mysterious long-range transport of giant mineral dust particles[J].Science Advances4(12): eaau2768.DOI: 10.1126/sciadv.aau2768 .
null
Wernli H1997.A lagrangian‐based analysis of extratropical cyclones.part Ⅱ: a detailed case‐study[J].Quarterly Journal of the Royal Meteorological Society123(542): 1677-1706.DOI: 10.1002/qj.49712354211 .
null
Wernli H Dirren S Liniger M A, et al, 2002.Dynamical aspects of the life cycle of the winter storm “Lothar” (24-26 December 1999) [J].Quarterly Journal of the Royal Meteorological Society128(580): 405-429.DOI: 10.1256/003590002321042036 .
null
Young M V Monk G A Browning K A1987.Interpretation of satellite imagery of a rapidly deepening cyclone[J].Quarterly Journal of the Royal Meteorological Society113(478): 1089-1115.DOI: 10.1002/qj.49711347803 .
null
蔡丽娜, 隋迎玖, 刘大庆, 等, 2009.一次爆发性气旋引发的罕见暴风雪过程分析[J].北京大学学报(自然科学版)45(4): 693-700.DOI: 10.13209/j.0479-8023.2009.103 .
null
付亮, 赵宇, 杨成芳, 等, 2018.影响东北的北上温带气旋暴雪的统计特征[J].高原气象37(6): 1705-1715.DOI: 10.7522/j.issn.1000-0534.2018.00099 .
null
任丽, 杨娃娃, 唐熠, 等, 2015.一次温带爆发性气旋引发的大暴雪过程诊断分析[J].气象与环境学报31(5): 45-52.DOI: 10. 3969/j.issn.1673-503X.2015.05.007 .
null
孙艳辉, 李泽椿, 寿绍文, 2012.2007年3月3-5日辽宁省暴雪和大风天气的中尺度分析[J].气象学报70(5): 936-948.DOI: 10.11676/qxxb2012.079 .
null
孙艳辉, 李泽椿, 寿绍文, 2015.一次暴风雪过程中的中尺度重力波特征及其影响[J].气象学报73(4): 697-710.DOI: 10. 11676/qxxb2015.052 .
null
寿绍文, 2010.位涡理论及其应用[J].气象36(3): 9-18.DOI: 10.7519/j.issn.1000-0526.2010.3.002 .
null
陶祖钰, 熊秋芬, 郑永光, 等, 2014.天气学的发展概要-关于锋面气旋学说的四个阶段[J].气象学报72(5): 940-947.DOI: 10.11676/qxxb2014.060 .
null
袁佳双, 寿绍文, 2002.高低空位涡扰动, 非绝热加热与气旋的发生发展[J].热带气象学报18(2): 121-130.DOI: 10.16032/j.issn.1004-4965.2002.02.004 .
null
张雅乐, 俞小鼎, 2021.黄河气旋暴雨过程发展演变成因分析[J].高原气象40(1): 74-84.DOI: 10.7522/j.issn.1000-0534. 2019.00103 .
null
赵兵科, 刘屹岷, 梁萍, 2008a.夏季梅雨期一次强江淮气旋位涡反演分析[J].高原气象27(): 158-169.
null
赵兵科, 吴国雄, 姚秀萍, 2008b.2003年夏季梅雨期一次强气旋发展的位涡诊断分析[J].大气科学32(6): 1241-1255.DOI: 10.3878/j.issn.1006-9895.2008.06.02 .
null
赵宇, 朱皓清, 蓝欣, 等, 2018a.基于CloudSat资料的北上江淮气旋暴雪云系结构特征[J].地球物理学报61(12): 4789-4804.DOI: 10.6038/cjg2018L0697 .
null
赵宇, 蓝欣, 杨成芳, 2018b.一次冬季江淮气旋逗点云区的雷达回波和气流结构分析[J].气象学报76(5): 726-741.DOI: 10. 11676/qxxb2018.030 .
文章导航

/