论文

高低层多尺度系统耦合作用下一次祁连山降水的数值模拟及诊断

  • 蒋强 ,
  • 魏林波 ,
  • 李超 ,
  • 李艳 ,
  • 王泓宇
展开
  • 1. 兰州大学大气科学学院,甘肃 兰州 730000
    2. 中国气象局武汉暴雨研究所 暴雨监测预警湖北省重点实验室,湖北 武汉 430205
    3. 重庆市綦江区气象局,重庆 401420
蒋强(1996 -), 男, 重庆铜梁人, 助理工程师, 主要从事大气动力学及中尺度数值模拟研究. E-mail:

收稿日期: 2022-08-22

  修回日期: 2022-10-11

  网络出版日期: 2023-09-26

基金资助

甘肃省自然科学基金项目(22JR5RA444); 国家自然科学基金面上项目(42275045); 第二次青藏高原综合科学考察研究项目(2019QZKK0104); 西北区域人工影响天气能力建设研究试验项目(ZQC-R18208)

Numerical Simulation and Diagnosis of a Precipitation in Qilian Mountains under the Coupling of Upper and Lower Systems

  • Qiang JIANG ,
  • LinBo WEI ,
  • Chao LI ,
  • Yan LI ,
  • HongYu WANG
Expand
  • 1. School of Atmospheric Sciences,Lanzhou University,Lanzhou 730000,Gansu,China
    2. Hubei Key Laboratory of rainstorm monitoring and early warning,Wuhan rainstorm Research Institute,China Meteorological Administration,Wuhan 430205,Hubei,China
    3. Qijiang District Meteorological Bureau,Chongqing 401420,China

Received date: 2022-08-22

  Revised date: 2022-10-11

  Online published: 2023-09-26

摘要

基于ERA5再分析资料和国家气象信息中心的CLDAS陆面格点降水数据, 对祁连山一次典型的系统性降水过程开展了系统性的WRF数值模拟和降水机制诊断研究。环流背景场的动力诊断结果表明, 中尺度的高空槽影响系统和低层局地尺度的绕流和爬流的协同作用提供了重要的动力条件, 其中高空槽的发展产生的槽前中尺度动力抬升作用决定了此次降水过程强降水带的分布, 而低层绕流和爬流为局地强降水的出现提供了直接动力条件。进一步的水汽输送和收支诊断结果表明, 此次降水的水汽源地主要来源于四川盆地, 绕流会为迎风坡前的降水区输送丰沛的水汽, 爬流则会促进水汽沿地形高度的逆梯度输送, 并在降水中心附近辐合; 在强降水发生阶段, 水汽的垂直输送作用对水汽收支的贡献最大, 水汽的辐合作用次之, 水汽局地变化基本可以忽略。最后大气层结特征的诊断结果表明, 当大气动力条件和水汽条件都有利于降水时, 配合对流层中低层层结不稳定性的增强, 更易触发对流, 从而增强迎风坡前强降水。

本文引用格式

蒋强 , 魏林波 , 李超 , 李艳 , 王泓宇 . 高低层多尺度系统耦合作用下一次祁连山降水的数值模拟及诊断[J]. 高原气象, 2023 , 42(5) : 1298 -1310 . DOI: 10.7522/j.issn.1000-0534.2022.00096

Abstract

Based on ERA5 reanalysis data and CLDAS land grid precipitation data from the National Meteorological Information Center, a systematic WRF numerical simulation and precipitation mechanism diagnosis of a typical systematic precipitation process in the Qilian Mountains are carried out in this paper.The dynamic diagnosis results of the circulation background field show that the interaction between the mesoscale upper trough system and the local lower flow around and flow over provides important dynamic conditions.The mesoscale dynamic uplift in front of the trough caused by the development of the upper trough determines the distribution of the heavy precipitation belt during the precipitation process, while the lower flow around and flow over provide direct dynamic conditions for local heavy precipitation.The further diagnosis results of water vapor transport and budget show that the water vapor source of this precipitation mainly comes from the Sichuan Basin.The flow around will transport abundant water vapor for the precipitation area in front of the windward slope, and the flow over will promote the reverse gradient transport of water vapor along the terrain height and converge near the precipitation center.In the stage of heavy precipitation, the vertical transport of water vapor contributes the most to the water vapor budget, followed by the convergence of water vapor, and the local variation of water vapor can be basically ignored.Finally, the diagnostic results of atmospheric stratification characteristics show that when both atmospheric dynamic conditions and water vapor conditions are conducive to precipitation, combined with the enhancement of the instability of low and medium tropospheric stratification, it is easier to trigger convection and enhance precipitation in front of the windward slope.

参考文献

null
Dudhia J1989.Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model[J].Journal of Atmospheric Sciences46(20): 3077-3107.
null
Hong S Y Dudhia J Chen S H2004.A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation[J].Monthly Weather Review132(1): 103-120.
null
Hong S Y Noh Y Dudhia J2006.A new vertical diffusion package with an explicit treatment of entrainment processes[J].Monthly Weather Review134(9): 2318-2341.
null
Huang Y Chubb T Sarmadi F, et al, 2018.Evaluation of wintertime precipitation forecasts over the Australian Snowy Mountains[J].Atmospheric Research, 207: 42-61.
null
Huai B Wang J Sun W, et al, 2021.Evaluation of the near-surface climate of the recent global atmospheric reanalysis for Qilian Mountains, Qinghai-Tibet Plateau[J].Atmospheric Research, 250: 105401.
null
Jiménez P A Dudhia J González-Rouco J F, et al, 2012.A revised scheme for the WRF surface layer formulation[J].Monthly Weather Review140(3): 898-918.
null
Jiang Q2003.Moist dynamics and orographic precipitation[J].Tellus A: Dynamic Meteorology and Oceanography55(4): 301-316.
null
Li Z Gao Y Wang Y, et al, 2015.Can monsoon moisture arrive in the Qilian Mountains in summer?[J].Quaternary International, 358: 113-125.
null
Mlawe E J Taubman S J Brown P D, et al, 1997.Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated‐k model for the longwave[J].Journal of Geophysical Research: Atmospheres102(D14): 16663-16682.
null
Maussion F Scherer D Finkelnburg R, et al, 2011.WRF simulation of a precipitation event over the Tibetan Plateau, China-an assessment using remote sensing and ground observations[J].Hydrology and Earth System Sciences15(6): 1795-1817.
null
Sarmadi F Huang Y Thompson G, et al, 2019.Simulations of orographic precipitation in the Snowy Mountains of Southeastern Australia[J].Atmospheric Research, 219: 183-199.
null
Sarmadi F Huang Y Siems S T, et al, 2017.Characteristics of wintertime daily precipitation over the Australian Snowy Mountains[J].Journal of Hydrometeorology18(10): 2849-2867.
null
Tewari M Chen F Wang W, et al, 2004.Implementation and verification of the unified NOAH land surface model in the WRF model[C]//20th conference on weather analysis and forecasting/16th conference on numerical weather prediction.1115(6): 2165-2170.
null
Wu L Li C Wang L, et al, 2020.Spatiotemporal variability of alpine precipitable water over arid northwestern China[J].Hydrological Processes34(16): 3524-3538.
null
Yá?ez-Morroni G Gironás J Caneo M, et al, 2018.Using the Weather Research and Forecasting (WRF) model for precipitation forecasting in an Andean region with complex topography[J].Atmosphere9(8): 304.
null
Zolina O Kapala A Simmer C, et al, 2004.Analysis of extreme precipitation over Europe from different reanalyses: a comparative assessment[J].Global and Planetary Change44(1-4): 129-161.
null
陈少勇, 石光普, 董安祥, 等, 2010.祁连山层状云的时空分布及其环流特征分析[J].中国沙漠30(4): 946-953.
null
段海霞, 刘新伟, 2008.祁连山区降水云微物理过程的模拟研究[C]//.中国气象学会2008年年会干旱与减灾——第六届干旱气候变化与减灾学术研讨会分会场论文集.465-477.
null
黄波, 2012.祁连山地区降水的时空分布特征及数值模拟研究[D].兰州大学.
null
姜润, 巩远发, 袁源, 等, 2021.青藏高原冬季1月绕流的变化特征及其对中国气候的影响[J].大气科学45(6): 1313-1326.
null
金妍, 李国平, 2021.爬流和绕流对山地突发性暴雨的影响[J].高原气象40(2): 314-323.DOI: 10.7522/j.issn.1000-0534. 2020.00041 .
null
刘和斌, 李育, 张新中, 等, 2020.祁连山东西段不同时间尺度气候差异研究[J].兰州大学学报(自然科学版)56(06): 724-732.
null
邵元亭, 刘奇俊, 荆志娟, 2013.祁连山夏季地形云和降水宏微观结构的数值模拟[J].干旱气象31(1): 18-23.
null
孙美平, 史继花, 姚晓军, 等, 2021.冰川下垫面对夏季云结构和云水含量的影响——以祁连山区疏勒南山为例[J].干旱区地理44(1): 141-148.
null
王婧羽, 崔春光, 王晓芳 等, 2014.2012年7月21日北京特大暴雨过程的水汽输送特征[J].气象40(2): 133-145.
null
薛健, 李宗省, 李宗杰, 等, 2021.基于TRMM数据的祁连山大气降水时空分布特征[J].水土保持研究28(1): 204-210.
null
尹宪志, 王毅荣, 罗汉, 等, 2020.1960-2019年甘肃大气水更新与地面降水空间分布的关系[J].中国沙漠40(6): 61-70.
null
叶笃正, 高由禧, 1979.青藏高原气象学[M].北京: 科学出版社.
null
朱乾根, 林锦瑞, 寿绍文, 2000.天气学原理和方法[M].北京: 气象出版社, 320-343.
null
周小刚, 王秀明, 陶祖钰, 2013.准地转理论基本问题回顾与讨论[J].气象39(4): 401-409.
null
朱飙, 张强, 卢国阳, 等, 2019.祁连山区空中水汽分布特征及变化趋势分析[J].高原气象38(5): 935-943.DOI: 10.7522/j.issn.1000-0534.2019.00047 .
null
张小明, 魏锋, 陆燕, 2006.祁连山近45a年降水异常的气候特征[J].干旱气象 (3): 35-41.
null
张大林, 1998.各种非绝热物理过程在中尺度模式中的作用[J].大气科学22(4): 548-561.
null
张耀存, 钱永甫, 1999.青藏高原隆升作用于大气临界高度的数值研究[J].气象学报57(2): 157-167.
文章导航

/