论文

利用短序列区域站资料计算干旱指数SPI的应用研究

  • 王兴 ,
  • 陈鲜艳 ,
  • 张强 ,
  • 黄鹏程 ,
  • 潘航
展开
  • 1. 兰州区域气候中心,甘肃 兰州 730020
    2. 国家气候中心,北京 100081
    3. 福建省气候中心,福建 福州 350001

王兴(1982 -), 女, 辽宁葫芦岛人, 高级工程师, 主要从事干旱监测和应用气象服务. E-mail:

收稿日期: 2022-05-27

  修回日期: 2022-08-19

  网络出版日期: 2023-09-26

基金资助

中国长江三峡集团有限公司项目(0704182); 国家重点研发计划项目(2017YFC1502402); 水利部三峡局地气候监测项目(SK2021031); 甘肃省自然科学基金项目(20JR10RA454)

Study of Using Short Sequence Data of Regional Station to Calculate Drought Index SPI

  • Xing WANG ,
  • xianyan CHEN ,
  • Qiang ZHANG ,
  • Pengcheng HUANG ,
  • Hang PAN
Expand
  • 1. Lanzhou Regional Climate Center,Lanzhou,Gansu Province 730020,China
    2. National Climate Centre,Beijing 100081,China
    3. Climate Center of Fujian Province,Fuzhou 350001,Fujian,China

Received date: 2022-05-27

  Revised date: 2022-08-19

  Online published: 2023-09-26

摘要

干旱是全球影响范围最广、 危害最重的自然灾害之一。标准化降水指数(SPI)是干旱监测业务和科研中使用最为广泛的气象干旱指数之一。目前, 中国已建设了大量高密度的区域自动气象观测站, 这些站由于缺乏长历史序列数据, 无法用于计算SPI, 如何利用这些短时间序列区域站数据开展精细化干旱监测评估是目前关注的重点。利用1960 -2020年2032个国家气象站和2010 -2020年云南省1009个区域站日降水数据, 选取31个国家站作为方法试验站, 构建了通过伽马分布参数插值法来拟合区域站的SPI(Iab), 并与常用的邻站替代法、 多元线性回归法进行了对比, 进行交叉检验和误差分析。通过对比拟合值与真值的相关系数、 均方根误差和平均绝对误差得出, 除在中国西北站点稀疏的地区外, 拟合值Iab均明显优于其他两种方法的拟合结果。在不同季节和不同时间尺度下, 参数插值法拟合得到的SPI(Iab)效果最好, 特别是在中国中东部地区的Iab值较其他方法平均误差减小0.02~0.30; 北京、 昆明历年拟合值Iab与真值Iz误差变幅最大为0.16, 不到半个干旱等级0.25; 拟合值Iab与真值Iz的相关系数达0.999, 通过0.001的显著性检验。采用该方法进行区域站干旱过程的监测结果显示, 利用高密度区域站计算的干旱指数SPI比仅利用国家站插值得到的SPI更接近干旱灾害实况。总体而言, 伽马分布参数插值法可以用于高精度短序列区域站降水资料推算干旱指数SPI, 从而实现气象干旱精密监测、 预报和评估服务。

本文引用格式

王兴 , 陈鲜艳 , 张强 , 黄鹏程 , 潘航 . 利用短序列区域站资料计算干旱指数SPI的应用研究[J]. 高原气象, 2023 , 42(5) : 1325 -1337 . DOI: 10.7522/j.issn.1000-0534.2022.00082

Abstract

Drought is one of the most widespread and harmful natural disasters in the world.The standardized precipitation Index (SPI) is one of the most widely used meteorological drought indexes in the drought monitoring operation and research.At present, China has built a large number of high-density regional automatic weather stations, which can not be used to calculate the SPI due to the lack of long history sequence data.How to use these short-term data to carry out refined drought monitoring and assessment is the focus of attention.Based on the daily precipitation data of 2032 national meteorological stations from 1960 to 2020 and 1009 regional stations in Yunnan Province from 2010 to 2020, 31 national stations are selected as the method test stations.The SPI(Iab) is constructed by the Gamma distribution parameter interpolation method to fit the regional stations, compared with the commonly neighbor station substitution method and multiple linear regression method, and cross-test and error analysis were carried out.By comparing the correlation coefficient, root mean square error and average absolute error between the fitting value and the true value, it can be concluded that the fitting value Iab is significantly better than the fitting results of the other two methods except in the areas with sparse stations in Northwest China.In different seasons and different time scales, the SPI (Iab) obtained by parameter interpolation is the best.In Mid-Eastern China, the average error of Iab decreases from 0.02 to 0.30 compared with the other two methods.The maximum error change of fitting value Iab and true value Iz in Beijing and Kunming over the years is 0.16, less than half the drought grade 0.25.The correlation coefficient of Iab and the true value (Iz) is above 0.999, passed the significance test of 0.001.The monitoring results of the drought process of the regional stations using this method show that the drought index SPI calculated by the high-density regional stations is closer to the actual drought disaster than the SPI obtained by the interpolation of the national stations.In general, the gamma distribution parameter interpolation method can be used to calculate the drought index SPI from the precipitation data of high-precision short series regional stations, so as to realize the precise monitoring, prediction and evaluation services of meteorological drought.

参考文献

null
AghaKouchak A2015.A multivariate approach for persistence-based drought prediction: application to the 2010-2011 East Africa drought[J].Journal of Hydrology, 526: 127-135.DOI: 10. 1016/j.jhydrol.2014.09.063 .
null
Cai X H Zhang W Q Fang X Y, et al, 2021.Identification of regional drought processes in North China using MCI analysis[J].Land, 10: 1390: 1-19.DOI: 10.3390/land10121390 .
null
DeGaetano A T Belcher B N Noon W2015.Temporal and spatial interpolation of the standardized precipitation index for computational efficiency in the dynamic drought index tool[J].Journal of Applied Meteorology and Climatology, 54: 795-810.DOI: 10. 1175/JAMC-D-14-0088.1 .
null
Guttman N B1999.Accepting the standardized precipitation index: a calculation algorithm[J].Journal of the American Water Resources Association35(2): 311-322.DOI: 10.1111/j.1752-1688.1999.tb03592.x .
null
Hayes M Svoboda M Wall N, et al, 2011.The lincoln declaration on drought indices: universal meteorological drought index recommended[J].Bulletin of the American Meteorological Society92(4): 485-488.DOI: 10.1175/2010BAMS3103.1 .
null
Javed T Li Y Rashid S, et al, 2021.Performance and relationship of four different agricultural drought indices for drought monitoring in China's mainland using remote sensing data[J].Science of The Total Environment, 759: 143530.DOI: 10.1016/j.scitotenv. 2020.143530 .
null
Labudová, Labuda M Taká? J2017.Comparison of SPI and SPEI applicability for drought impact assessment on crop production in the Danubian Lowland and the East Slovakian Lowland[J].Theoretical & Applied Climatology, 128: 491-506.DOI: 10.1007/s00704-016-1870-2 .
null
Lloyd-Hughes B Saunders M A2002.A drought climatology for Europe[J].International Journal of Climatology, 22: 1571-1592.
null
Mckee T B Doesken N J Kleist J1993.The Relationship of Drought Frequency and Duration of Time Scales//Proceedings of the 8th Conference on Applied Climatology Bosto[J].American Meteorological Society, 17(22): 179-183.
null
WMO, 2012.Standardized precipitation index user guide[R].National Drought Mitigation Center, Geneva.www.wmo.int/agm.Geneva: World Meteorological Organization.7-8.
null
Wang Z Y Zhang Q Sun S, et al, 2022.Interdecadal variation of the number of days with drought in China based on the standardized precipitation evapotranspiration index (SPEI)[J], Journal of Climate35(6): 2003-2018.DOI: 10.1175/JCLI-D-20-0985.1 .
null
Yao N Li Y Dong Q G, et al, 2020a.Influence of the accuracy of reference crop evapotranspiration on drought monitoring using standardized precipitation evapotranspiration index in mainland China[J].Land Degradation & Development, 31: 266-282.DOI: 10.1002/ldr.3447 .
null
陈发虎, 董广辉, 陈建徽, 等, 2019.亚洲中部干旱区气候变化与丝路文明变迁研究: 进展与问题[J].地球科学进展34(6): 561-572.DOI: 10.11867/j.issn.1001-8166.2019.06.0561 .
null
高歌, 龚乐冰, 赵珊珊, 等, 2007.日降水量空间插值方法研究[J].应用气象学报18(5): 732-736.DOI: 10.3969/j.issn.1001-7313. 2007.05.020 .
null
辜智慧, 史培军, 陈晋, 2006.气象观测站点稀疏地区的降水插值方法探讨——以锡林郭勒盟为例[J].北京师范大学学报(自然科学版)42(2): 204-208.DOI: 10.3321/j.issn: 0476-0301. 2006.02.022 .
null
管晓丹, 石瑞, 孔祥宁, 等, 2018.全球变化背景下半干旱区陆气机制研究综述[J].地球科学进展33(10): 995-1004.DOI: 10. 11867/j.issn.1001-8166.2018.10.0995 .
null
李斌, 解建仓, 胡彦华, 等, 2017.基于标准化降水指数的陕西省干旱时空变化特征分析[J].农业工程学报33(17): 113-119.DOI: 10.11975/j.issn.1002-6819.2017.17.015 .
null
李海涛, 邵泽东, 2019.空间插值分析算法综述[J].计算机系统应用28(7): 1-8.DOI: 10.15888/j.cnki.csa.006988 .
null
李金洁, 王爱慧, 2019.基于西南地区台站降雨资料空间插值方法的比较[J].气候与环境研究24(1): 50-60.DOI: 10.3878/j.issn.1006-9585.2017.17072 .
null
李忆平, 李耀辉, 2017.气象干旱指数在中国的适应性研究进展[J].干旱气象35(5): 709-723.DOI: 10.11755/j.issn.1006-7639(2017)-05-0709 .
null
廖要明, 张存杰, 2017.基于MCI的中国干旱时空分布及灾情变化特征[J].气象43(11): 1402-1409.DOI: 10.7519/j.issn. 1000-0526.2017.11.009 .
null
钱正安, 宋敏红, 吴统文, 等, 2017.世界干旱气候研究动态及进展综述(Ⅱ): 主要研究进展[J].高原气象36(6): 1457-1476.DOI: 10.7522/j.issn.1000-0534.2017.00075 .
null
任芝花, 张志富, 孙超, 等, 2015.全国自动气象站实时观测资料三级质量控制系统研制[J].气象41(10): 1268-1277.DOI: 10. 7519/j.issn.1000-0526.2015.10.010 .
null
司鹏, 郝立生, 罗传军, 等, 2017.华北平原保定气象站百年降水序列的建立[J].气候变化研究快报6(3): 177-185.DOI: 10. 12677/CCRL.2017.63019 .
null
王有民, 张强, 邹旭恺, 2007.干旱指标研究进展及国家级干旱监测业务介绍[C]//中国气象学会2007 年气候学会分会场论文集.广州: 中国气象学会.
null
王春林, 司建华, 赵春彦, 等, 2019.河西走廊近57年来干旱灾害特征时空演化分析[J].高原气象38(1): 196-205.DOI: 10. 7522/j.issn.1000-0534.2018.00081 .
null
王映思, 肖天贵, 董雪峰, 2021.1961-2019年中国西南地区夏季长周期旱涝急转与大气环流特征[J].高原气象40(4): 760-772.DOI: 10.7522/j.issn.1000-0534.2020.00067 .
null
王素萍, 王劲松, 张强, 等, 2020.多种干旱指数在中国北方的适用性及其差异原因初探[J].高原气象39(3): 628-640.DOI: 10.7522/j.issn.1000-0534.2019.00049 .
null
谢五三, 张强, 李威, 等, 2021.干旱指数在中国东北、 西南和长江中下游地区适用性分析[J].高原气象40(5): 1136-1146.DOI: 0.7522/j.issn.1000-0534.2020.00102 .
null
徐一丹, 任传友, 马熙达, 等, 2017.基于SPI/SPEI指数的东北地区多时间尺度干旱变化特征对比分析[J].干旱区研究34(6): 1250-1262.DOI: 10.13866/j.azr.2017.06.06 .
null
杨耘, 李陇同, 刘艳, 等, 2020.稀疏样本下冬春季月平均气温空间插值研究——以新疆玛纳斯河流域为例[J].水资源与水工程学报31(1): 248-253.DOI: 10.11705/j.issn.1672-643X. 2020.01.37 .
null
闫昕旸, 张强, 闫晓敏, 等, 2019.全球干旱区分布特征及成因机制研究进展[J].地球科学进展34(8): 826-841.DOI: 10. 11867/j.issn.10018166.2019.08.0826 .
null
于洋, 卫伟, 陈利顶, 等, 2015.黄土高原年均降水量空间插值及其方法比较[J].应用生态学报26(4): 999-1006.DOI: 10. 13287/j.1001-9332.2015.0013 .
null
张存杰, 刘海波, 宋艳玲, 等, 2017.GB/T 20481-2017.气象干旱等级[J].北京: 中国标准出版社, 1-26.
null
张红丽, 张强, 刘骞, 等, 2016.中国南方和北方气候干燥程度的变化特征及差异性分析[J].高原气象35(5): 1339-1351.DOI: 10.7522/j.issn.1000-0534.2015.00099 .
null
张立杰, 李健, 2018.基于SPEI和SPI指数的西江流域干旱多时间尺度变化特征[J].高原气象37(2): 560-567.DOI: 10. 7522/j.issn.1000-0534.2018.00013 .
null
赵敏, 周广胜, 2004.中国森林生态系统的植物碳贮量及其影响因子分析[J].地理科学24(1): 50-54.DOI: 10.3969/j.issn. 1000-0690.2004.01.009 .
null
张强, 邹旭恺, 陈鲜艳, 等, 2021.考虑多尺度和蒸散影响的新干旱指数研究——以云南为例[J].高原气象41(4): 909-920.DOI: 10. 7522/j.issn.1000-0534.2021.00026 .
null
张强, 邹旭恺, 肖风劲, 等, 2006. 气象干旱等级( GB/T 20481-2006)[S].北京: 中国标准出版社, 1-17.
null
张强, 姚玉璧, 李耀辉, 等, 2020.中国干旱事件成因和变化规律的研究进展与展望[J].气象学报78(3): 500-521.DOI: 10. 11676/qxxb2020.032 .
null
张强, 张良, 崔显成, 等, 2011.干旱监测与评价技术的发展及其科学挑战[J].地球科学进展26(7): 763-778.
null
张强, 谢五三, 陈鲜艳, 等, 2021.1961-2019 年长江中下游区域性干旱过程及其变化[J].气象学报79(4): 1-12.DOI: 10. 11676/qxxb2021.035 .
文章导航

/