论文

基于不同背景场的云内COSMIC掩星资料的偏差分析

  • 殷延安 ,
  • 杨胜朋
展开
  • 1. 南京信息工程大学大气科学学院,江苏 南京 210044
    2. 南京信息工程大学资料同化研究与应用联合中心,江苏 南京 210044

殷延安(1998 -), 男, 安徽安庆人, 硕士研究生, 主要从事GNSS掩星气象学的研究. E-mail:

收稿日期: 2022-07-07

  修回日期: 2022-11-15

  网络出版日期: 2023-09-26

基金资助

国家自然科学基金项目(41875032)

Bias Characteristics of COSMIC RO Data within Clouds Based on Different Background Fields

  • Yan’an YIN ,
  • Shengpeng YANG
Expand
  • 1. Joint Center for Data Assimilation Research and Application,Nanjing University of Information Science and Technology,Nanjing 210044,Jiangsu,China
    2. College of Atmospheric Science,Nanjing University of Information Science and Technology,Nanjing 210044,Jiangsu,China

Received date: 2022-07-07

  Revised date: 2022-11-15

  Online published: 2023-09-26

摘要

利用2007 -2009年CloudSat卫星云廓线雷达(nadir-pointing cloud profiling radar, CPR)资料, 气象、 电离层和气候卫星联合观测系统(Global Constellation Observing System for Meteorology, Ionosphere, and Climate, COSMIC)掩星资料, 分析了不同类型云内COSMIC掩星资料与欧洲中期天气预报中心(European Centre for Medium-Range Weather Forecasts, ECMWF)和美国国家环境预报中心(National Centers for Environmental Prediction, NCEP)分析场之间的折射率偏差特征。COSMIC与ECMWF和NCEP之间的折射率偏差分别用 N b i a s E C M W F N b i a s N C E P表示。研究发现, N b i a s E C M W F在积云、 层积云、 高积云和高层云中的最大值分别为1.2%、 0.2%、 0.5%和0.2%, 而 N b i a s N C E P则分别为1.8%、 0.5%、 0.5%和0.4%。在层积云的对流层下层 N b i a s N C E P存在较大的负值, 而 N b i a s E C M W F为正值。折射率的正偏差随着液态水含量增加而增加。从全球分布来看, 赤道辐合带云量丰富, N b i a s N C E P N b i a s E C M W F也存在明显的正偏差, 它在空间上和水汽的正偏差以及温度的负偏差高度相关。

本文引用格式

殷延安 , 杨胜朋 . 基于不同背景场的云内COSMIC掩星资料的偏差分析[J]. 高原气象, 2023 , 42(5) : 1351 -1360 . DOI: 10.7522/j.issn.1000-0534.2022.00098

Abstract

The Global Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) radio occultation (RO) from 2007 to 2009 were collocated with the CloudSat nadir-pointing cloud profiling radar (CPR) in time and space in this study.We investigated the characteristics of fractional refractivity differences between COSMIC RO and the analysis of the European Centre for Medium-Range Weather Forecasts (ECMWF) and the National Centers for Environmental Prediction (NCEP) within the different clouds. N b i a s E C M W F and N b i a s N C E Pindicate the fractional differences of refractivity between COSMIC RO and ECMWF, and COSMIC RO and NCEP analysis, respectively.The maximum values of N b i a s E C M W F within cumulus, stratocumulus, altocumulus and altostratus are 1.2%, 0.2%, 0.5%, and 0.2%.The highest values of N b i a s N C E Pare 1.8%, 0.5%, 0.5% and 0.4%, respectively.In the lower troposphere, the value of N b i a s E C M W F is positive and increases with the liquid water content, whereas the value of N b i a s N C E P is negative.From the perspective of global distribution, large positive refractivity differences for both ECMWF and NCEP analyses are shown in the equatorial convergence zone, which is highly correlated with the positive bias of water vapor and the negative bias of temperature in space.

参考文献

null
Anthes R A2011.Exploring Earth’s atmosphere with radio occultation[J].Atmospheric Measurement Techniques4(6): 1077-1103.DOI: 10.5194/amt-4-1077-2011 .
null
Anthes R A Bernhardt P A Chen Y, et al, 2008.The COSMIC/formosat-3 mission: early results[J].Bulletin of the American Meteorological Society89(3): 313-334.DOI: 10.1175/BAMS-89-3-313 .
null
Anthes R Rocken C Kuo Y H2000.Applications of COSMIC to meteorology and climate[J].Terrestrial, Atmospheric and Oceanic Sciences11(1): 115-156.DOI: 10.3319/TAO. 2000.11.1. 115(COSMIC ).
null
Hajj G Ao O Iijima B, et al, 2004.CHAMP and SAC-C atmospheric occultation results and intercomparisons[J].Journal of Geophysical Research: Atmospheres109(D6): D06109.DOI: 10. 1029/2003JD003909 .
null
Im E Wu C Durden S2005.Cloud profiling Radar for the CloudSat mission[J].Aerospace and Electronic Systems Magazine, IEEE, 20(10): 15-18.DOI: 10.1109/MAES.2005.1581095 .
null
Kahn B Eldering A Braverman A, et al, 2007.Toward the characterization of upper tropospheric clouds using atmospheric infrared sounder and microwave limb sounder observations[J].Journal of Geophysical Research112(D5): D05202.DOI: 10.1029/2006JD007336 .
null
Kuo C L Ade P Bock J, et al, 2004.High-Resolution observations of the cosmic microwave background power spectrum with ACBAR[J].The Astrophysical Journal600(1): 32-51.DOI: 10. 1086/379783 .
null
Kursinski R Hajj G2001.A comparison of water vapor derived from GPS occultations and global weather analyses[J].Journal of Geophysical Research: Atmospheres106(D1): 1113-1138.DOI: 10.1029/2000JD900421 .
null
Kursinski R Hajj G Bertiger W, et al, 1996.Initial results of radio occultation observations of earth’s atmosphere using the global positioning system[J].Science271(5252): 1107-1110.DOI: 10.1126/science.271.5252.1107 .
null
Kursinski R Hajj G Leroy S, et al, 2000.The GPS radio occultation technique[J].Terrestrial, Atmospheric and Oceanic Sciences11(1): 53-114.DOI: 10.3319/TAO.2000.11.1.53(COSMIC ).
null
Kursinski R Hajj G Schofield J, et al, 1997.Observing Earth’s atmosphere with radio occultation measurements using the Global Positioning System[J].Journal of Geophysical Research: Atmospheres102(D19): 23429-23465.DOI: 10.1029/97JD01569 .
null
Lin L Zou X L Anthes R, et al, 2010.COSMIC GPS radio occultation temperature profiles in clouds[J].Monthly Weather Review138(4): 1104-1118.DOI: 10.1175/2009MWR2986.1 .
null
Rocken C Anthes R Exner M, et al, 1997.Analysis and validation of GPS/MET data in the neutral atmosphere[J].Journal of Geophysical Research: Atmospheres102(D25): 29849-29866.DOI: 10.1029/97JD02400 .
null
Schreiner W S Weiss J P Anthes R, et al, 2020.COSMIC-2 radio occultation constellation‐first results[J].Geophysical Research Letters47(4): e2019GL086841.DOI: 10.1029/2019GL086841 .
null
Schreiner W Rocken C Sokolovskiy S, et al, 2010.Quality assessment of COSMIC/FORMOSAT-3 GPS radio occultation data derived from single-and double-difference atmospheric excess phase processing[J].GPS Solutions14(1): 13-22.DOI: 10.1007/s10291-009-0132-5 .
null
Sokolovskiy S2003.Effect of superrefraction on inversions of radio occultation signals in the lower troposphere[J].Radio Science38(3): 1058.DOI: 10.1029/2002RS002728 .
null
Stephens G L Vane D G Boain R J, et al, 2002.The CloudSat mission and the A-Train: a new dimension of space-based observations of clouds and precipitation[J].Bulletin of the American Meteorological Society83(12): 1771-1790.DOI: 10.1175/BAMS-83-12-1771 .
null
Tanelli S Durden S L Im E, et al, 2008.CloudSat’s cloud profiling Radar after two years in orbit[J].IEEE Transactions on Geoscience and Remote Sensing46(11): 3560-3573.DOI: 10.1109/TGRS.2008.2002030 .
null
Ware R Rocken C Solheim F, et al, 1996.GPS sounding of the atmosphere from low Earth orbit[J].Bulletin of The American Meteorological Society77(1): 19-40.DOI: 10.1175/1520-0477(1996)077<0019: GSOTAF>2.0.CO; 2 .
null
Wickert J Reigber C Beyerle G, et al, 2001.Atmosphere sounding by GPS radio occultation[J].Geophysical Research Letters28(17): 3263-3266.DOI: 10.1029/2001GL013117 .
null
Wickert J Schmidt T Beyerle G, et al, 2004.The radio occultation experiment aboard CHAMP[J].Journal of the Meteorological Society of Japan82(1B): 381-395.DOI: 10.2151/jmsj.2004.381 .
null
Yang S P Zou X L2012.Assessments of cloud liquid water contributions to GPS radio occultation refractivity using measurements from COSMIC and CloudSat[J].Journal of Geophysical Research: Atmospheres117(D6): D06219.DOI: 10.1029/2011JD016452 .
null
Yang S P Zou X L Anthes R2021.Raytracing simulated GPS radio wave propagation paths experiencing large disturbances when going through the top of the sub-cloud layer[J].Remote Sensing13(22): 4693.DOI: 10.3390/rs13224693 .
null
Zou X L Yang S P Ray P2012.Impacts of ice clouds on GPS radio occultation measurements[J].Journal of Atmospheric Sciences, 69: 3670-3682.DOI: 10.1175/JAS-D-11-0199.1 .
null
孟恬, 杨胜朋, 程华, 2021.GPS掩星观测误差和边界层高度的判别[J].高原气象40(5): 1189-1201.DOI: 10.7522/j.issn.1000-0534.2020.00098 .
null
刘建军, 陈葆德, 2017.基于CloudSat卫星资料的青藏高原云系发生频率及其结构[J].高原气象36(3): 632-642.DOI: 10. 7522/j.issn.1000-0534.2017.00028 .
null
杨冰韵, 吴晓京, 郭徵, 2017.基于CloudSat资料的中国地区深对流云物理特征研究[J].高原气象36(6): 1655-1664.DOI: 10.7522/j.issn.1000-0534.2017.00006 .
null
余小嘉, 杨胜朋, 蒋熹, 2019.COSMIC掩星资料在青藏高原地区的偏差特征[J].高原气象38(2): 288-298.DOI: 10.7522/j.issn.1000-0534.2018.00162 .
null
周文, 杨胜朋, 蒋熹, 等, 2018.利用COSMIC掩星资料研究青藏高原地区大气边界层高度[J].气象学报76(1): 117-133.DOI: 10.11676/qxxb2017.069 .
null
邹晓蕾, 2012.GPS无线电掩星资料特点[J].气象科技进展2(5): 49-54.DOI: 10.3969/j.issn.2095-1973.2012.05.007 .
文章导航

/