论文

黄河上游水源涵养区近60年关键气候要素的时空变化

  • 张子涵 ,
  • 王学佳 ,
  • 杨梅学 ,
  • 刘兰娅 ,
  • 李继春 ,
  • 万国宁
展开
  • 1. 中国科学院西北生态环境资源研究院,冰冻圈科学国家重点实验室,甘肃 兰州 730000
    2. 中国科学院大学,北京 100049
    3. 兰州大学资源环境学院,西部环境教育部重点实验室,甘肃 兰州 730000
    4. 兰州大学甘肃连城森林生态系统野外科学观测研究站,甘肃 兰州 730333
    5. 兰州交通大学测绘与地理信息学院,甘肃 兰州 730000

张子涵(1998 -), 男, 河北张家口人, 硕士研究生, 主要从事青藏高原陆气相互作用研究 E-mail:

收稿日期: 2022-10-18

  修回日期: 2023-02-13

  网络出版日期: 2023-11-14

基金资助

国家自然科学基金项目(41771068); 兰州大学人才引进科研启动基金项目(561120217); 第二次青藏高原综合科学考察研究项目(2019QZKK0208)

Spatio-Temporal Changes of Key Climatic Elements in the Upper Yellow River Water Conservation Area in Recent 60 Years

  • Zihan ZHANG ,
  • Xuejia WANG ,
  • Meixue YANG ,
  • Lanya LIU ,
  • Jichun LI ,
  • Guoning WAN
Expand
  • 1. State Key Laboratory of Cryospheric Science,Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences,Lanzhou 730000,Gansu,China
    2. University of Chinese Academy of Sciences,Beijing 100049,China
    3. Key Laboratory of Western China’s Environmental Systems,Ministry of Education,College of Earth and Environmental Sciences,Lanzhou University,Lanzhou 730000,Gansu,China
    4. Gansu Liancheng Forest Ecosystem Field Observation and Research Station,Lanzhou University,Lanzhou 730333,Gansu,China
    5. Faculty of Geomatics,Lanzhou Jiaotong University,Lanzhou 730000,Gansu,China

Received date: 2022-10-18

  Revised date: 2023-02-13

  Online published: 2023-11-14

摘要

黄河上游水源涵养区是黄河流域生态保护与社会经济高质量发展的重要区段, 气候变化对其水资源时空分配的影响会加剧自然灾害的发生, 进而影响到我国区域生态乃至人类的生存环境。本文基于1961 -2016年CN05.1格点气温、 降水、 风速数据以及1981 -2020年GLEAM V3.5a实际蒸发数据分析了黄河上游水源涵养区过去近60年的关键气候要素变化。结果表明: (1)研究区气温显著上升, 气温变化趋势达0.34 °C·(10a)-1, 冬季升温幅度最大, 其中黑河区域玛曲县及周边地区的升温最为剧烈。(2)区域降水量整体呈现上升趋势, 降水变化趋势为9.3 mm·(10a)-1, 春夏季增速相对较快, 冬季最慢, 增长趋势由西北向东南逐渐减小, 西部少雨干旱地区增长显著, 东南部多雨湿润地区则有较为明显的减小趋势。(3)风速在20世纪70年代初经历异常上升后便持续下降, 风速变化趋势为-0.11 m·s-1·(10a)-1, 在空间上大部分地区都减少, 尤其是北部大通河区域。(4)实际蒸发量显著上升, 增长趋势达11.89 mm·(10a)-1, 春、 冬季相对增幅较大, 增速呈现由东向西逐渐增加的趋势, 其中扎陵湖鄂陵湖区域以及大通河区域西部的增加最为显著, 只有中部以及东南部零星几个地方减少。(5)从降水与实际蒸发来看, 降水量增速略高于同期(1981 -2016年)实际蒸发, 因此黄河上游水源涵养区随着气候变暖存在暖湿化趋势。

本文引用格式

张子涵 , 王学佳 , 杨梅学 , 刘兰娅 , 李继春 , 万国宁 . 黄河上游水源涵养区近60年关键气候要素的时空变化[J]. 高原气象, 2023 , 42(6) : 1372 -1385 . DOI: 10.7522/j.issn.1000-0534.2023.00011

Abstract

The upper Yellow River water conservation area is an important section for ecological protection and high-quality social-economic development in the Yellow River Basin.The impact of climate change on the spatio-temporal distribution of its water resources will exacerbate the occurrence of natural disasters, which in turn will affect China's regional ecology and even the living environment of human beings.Based on the CN05.1 gridded air temperature, precipitation, and wind speed data from 1961 to 2016 and the actual evaporation data of GLEAM V3.5a from 1981 to 2020, this paper analyzed the changes of key climatic elements in the water conservation area of the upper Yellow River Basin in the past 60 years.The results are as follows: (1) The air temperature in the research area increased significantly, the variation trend of the air temperature can reach 0.34 °C·(10a)-1, and the largest temperature rise occurred in winter.Maqu county and surrounding areas in Heihe region have seen the most dramatic warming.(2) The regional precipitation increased as a whole, the variation trend of the precipitation is about 9.3 mm·(10a)-1.The growth rate was relatively rapid in spring and summer, and the slowest occurred in winter.The growth trend gradually decreased from the northwest to the southeast, with a significant increase in the arid regions of the west, and a relative decreasing trend in the humid regions of the southeast.(3) After experienced an anomalous rise in the early 1970s, the near-surface wind speed continued to decline, the variation trend of it is about -0.11 m·s-1·(10a)-1, and the wind speed decreased in most regions of the study area, especially in the northern Datong River area.(4) The actual evaporation showed an increasing trend, the variation trend of it is 11.89 mm·(10a)-1, of which the relatively large increases occurred in spring and winter, and the growth rate showed a trend of gradual increasing from east to west.Among them, the increase of the actual evaporation in Zhaling Lake, Eling Lake area and the western part of Datong River area was the most significant, and only a few places in the middle and southeast decreased.(5) From the perspective of precipitation and evaporation, the growth rate of precipitation is slightly higher than that of the actual evaporation during the same period (from 1981 to 2016), therefore the water conservation area in the upper reaches of the Yellow River Basin also has the trends of warming and wetting as the climate warms.

参考文献

null
Ding Y H2018.Sustainable management and action in China under the increasing risks of global climate change[J].Engineering4(3): 301-305.DOI: 10.1016/j.eng.2017.12.014 .
null
Gu C J Mu X Peng G, et al, 2019.Changes in run off and sediment load in the three parts of the Yellow River Basin, in response to climate change and human activities[J].Hydrological Processes33(4): 585-601.DOI: 10.1002/hyp.13345 .
null
IPCC, 2021.Climate Change 2021: the physical science basis.Contribution of Working Group I to the Sixth Assessment Report of the intergovernmental panel on climate change [EB/OL].[2021-08-09].
null
Kong D X Miao C Y Wu J W, et al, 2016.Impact assessment of climate change and human activities on net runoff in the Yellow River Basin from 1951 to 2012[J].Ecological Engineering, 91: 566-573.DOI: 10.1016/j.ecoleng.2016.02.023 .
null
Lan C Zhang Y X Gao Y H, et al, 2013.The impacts of climate change and land cover/use transition on the hydrology in the upper Yellow River Basin, China[J].Journal of Hydrology, 502: 37-52.DOI: 10.1016/j.jhydrol.2013.08.003 .
null
Li Q Yang M X Wan G N, et al, 2016.Spatial and temporal precipitation variability in the source region of the Yellow River[J].Environmental Earth Sciences75(7): 594.1-594.14.DOI: 10. 1007/s12665-016-5583-8 .
null
Lv Z Y Mu J X Yan D H, et al, 2018.Spatial and temporal variability of precipitation in the context of climate change: a case study of the upper Yellow River Basin, China[J].IOP Conference Series: Earth and Environmental Science191(1): 012141.DOI: 10.1088/1755-1315/191/1/012141 .
null
Miralles D G Holmes T R H Jeu R D, et al, 2011.Global land-surface evaporation estimated from satellite-based observations[J].Hydrology and Earth System Sciences15(2): 453-469.DOI: 10.5194/hess-15-453-2011 .
null
Martens B Miralles D G Hans L, et al, 2017.GLEAM v3: satellite-based land evaporation and root-zone soil moisture[J].Geoscientific Model Development10(5): 1903-1925.DOI: 10.5194/gmd-10-1903-2017 .
null
Nchaba T Mpholo M Lennard C2016.Long-term austral summer wind speed trends over southern Africa[J].International Journal of Climatology37(6): 2850-2862.DOI: 10.1002/joc.4883 .
null
Pang G J Wang X J Chen D L, et al, 2021.Evaluation of a climate simulation over the Yellow River Basin based on a regional climate model (REMO) within the CORDEX[J].Atmospheric Research254(4): 105522.DOI: 10.1016/j.atmosres.2021.105522 .
null
Seneviratne S I Donat M G Pitman A J, et al, 2016.Allowable CO2 emissions based on regional and impact-related climate targets[J].Nature529(7587): 477-483.DOI: 10.1038/nature16542 .
null
Sun Y Zhang X B Zwiers F W, et al, 2014.Rapid increase in the risk of extreme summer heat in eastern China[J].Nature Climate Change4(12): 1082-1085.DOI: 10.1038/NCLIMATE2410 .
null
Su B D Huang J L Fischer T, et al, 2018.Drought losses in China might double between the 1.5 ℃ and 2.0 ℃ warming[J].Proceedings of the National Academy of Sciences115(42): 10600-10605.DOI: 10.1073/pnas.1802129115 .
null
Tian L Zhang B Q Chen S Y, et al, 2022.Large-scale afforestation enhances precipitation by intensifying the atmospheric water cycle over the Chinese Loess Plateau[J].Journal of Geophysical Research: Atmospheres, 127(16): n/a.DOI: 10.1029/2022JD036738 .
null
Wang X J Yang M X Liang X W, et al, 2014.The dramatic climate warming in the Qaidam Basin, northeastern Tibetan Plateau, during 1961-2010[J].International Journal of Climatology34(5): 1524-1537.DOI: 10.1002/joc.3781 .
null
Wang X J Pang G J Yang M X2018.Precipitation over the Tibetan Plateau during recent decades: a review based on observations and simulations[J].International Journal of Climatology38(3): 1116-1131.DOI: 10.1002/joc.5246 .
null
Wang X J Chen D L Pang G J, et al, 2020.A climatology of surface-air temperature difference over the Tibetan Plateau: results from multi‐source reanalyses[J].International Journal of Climatology40(14): 6080-6094.DOI: 10.1002/joc.6568 .
null
Wang X J Chen D L Pang G J, et al, 2021.Historical and future climates over the upper and middle reaches of the Yellow River Basin simulated by a regional climate model in CORDEX[J].Climate Dynamics56(1): 1-23.DOI: 10.1007/s00382-020-05617-4 .
null
Wang X J Ran Y H Pang G J, et al, 2022.Contrasting characteristics, changes, and linkages of permafrost between the Arctic and the Third Pole[J].Earth-Science Reviews230(10): 104042.DOI: 10.1016/j.earscirev.2022.104042
null
Wu J Zha J L Zhao D M, et al, 2018.Changes of wind speed at different heights over eastern China during 1980-2011[J].International Journal of Climatology38(12): 4476-4495.DOI: 10. 1002/joc.5681 .
null
Xu J X2015.Complex response of runoff: precipitation ratio to the rising air temperature: the source area of the Yellow River, China[J].Regional Environmental Change15(1): 35-43.DOI: 10. 1007/s10113-014-0617-9 .
null
Zeng Z Z Ziegler A D Searchinger T, et al, 2019.A reversal in global terrestrial stilling and its implications for wind energy production[J].Nature Climate Change9(12): 1-7.DOI: 10.1038/s41558-019-0622-6 .
null
Zhang C Tang Q H Chen D L, et al, 2019.Moisture source changes contributed to different precipitation changes over the northern and southern Tibetan Plateau[J].Journal of Hydrometeorology20(2): 217-229.DOI: 10.1175/JHM-D-18-0094.1 .
null
Zhang B Q Tian L Zhao X N, et al, 2021.Feedbacks between vegetation restoration and local precipitation over the Loess Plateau in China[J].Science China Earth Sciences64(6): 920-931.DOI: 10.1007/s11430-020-9751-8 .
null
Zhao F F Xu Z X Huang J X2007.Long-term trend and abrupt change for major climate variables in the upper Yellow River Basin[J].Journal of Meteorological Research21(2): 204-214.DOI: 10.1029/2006JD007471 .
null
Zhou B T Xu Y Wu J, et al, 2016.Changes in temperature and precipitation extreme indices over China: analysis of a high-resolution grid dataset[J].International Journal of Climatology36(3): 1051-1066.DOI: 10.1002/joc.4400 .
null
丁一汇, 李霄, 李巧萍, 2020.气候变暖背景下中国地面风速变化研究进展[J].应用气象学报31(1): 1-12.DOI: 10.11898/1001-7313.20200101 .
null
谷佳贺, 薛华柱, 董国涛, 等, 2021.黄河流域NDVI/土地利用对蒸散发时空变化的影响[J].干旱区地理44(1): 158-167.DOI: 10.12118/j.issn.1000-6060.2021.01.17 .
null
黄建平, 张国龙, 于海鹏, 等, 2020.黄河流域近40年气候变化的时空特征[J].水利学报51(9): 1048-1058.DOI: 10.13243/j.cnki.slxb.20200603 .
null
李霞, 高艳红, 王婉昭, 等, 2014.黄河源区气候变化与GLDAS数据适用性评估[J].地球科学进展29(4): 531-540.DOI: 10. 11867/j.issn.1001-8166.2014.04.0531 .
null
刘吉峰, 王金花, 焦敏辉, 等, 2011.全球气候变化背景下中国黄河流域的响应[J].干旱区研究28(5): 860-865.DOI: 10. 13866/j.azr.2011.05.019 .
null
刘勤, 严昌荣, 张燕卿, 等, 2012.近50年黄河流域气温和降水量变化特征分析[J].中国农业气象33(4): 75-480.DOI: 10. 3969/j.issn.1000-6362.2012.04.001 .
null
刘煜, 刘蓉, 王欣, 等, 2022.黄河源区干湿演变条件下的水汽输送特征研究[J].高原气象41(1): 47-57.DOI: 10.7522/j.issn. 1000-0534.2020.00057 .
null
柳春, 王守荣, 梁有叶, 等, 2013.1961-2010年黄河流域蒸发皿蒸发量变化及影响因子分析[J].气候变化研究进展9(5): 327-334.DOI: 10.3969/j.issn.1673-1719.2013.05.003 .
null
马雪宁, 张明军, 黄小燕, 等, 2012a.黄河上游流域近49a气候变化特征和未来变化趋势分析[J].干旱区资源与环境26(6): 17-23.DOI: 10.13448/j.cnki.jalre.2012.06.029 .
null
马雪宁, 张明军, 王圣杰, 等, 2012b.“蒸发悖论”在黄河流域的探讨[J].地理学报67(5): 645-656.DOI: 10.11821/xb201205007 .
null
马佳宁, 高艳红, 2019.近50年黄河流域上游年均降水与极端降水变化分析[J].高原气象38(1): 124-135.DOI: 10.7522/j.issn.1000-0534.2018.00126 .
null
马柱国, 符淙斌, 周天军, 等, 2020.黄河流域气候与水文变化的现状及思考[J].中国科学院院刊35(1): 52-60.DOI: 10. 16418/j.issn.1000-3045.20191223002 .
null
童瑞, 杨肖丽, 任立良, 等, 2015.黄河流域1961-2012年蒸散发时空变化特征及影响因素分析[J].水资源保护31(3): 16-21.DOI: 10.3880/j.issn.10046933.2015.03.004 .
null
王胜杰, 赵国强, 王旻燕, 等, 2021.1961-2020年黄河流域气候变化特征研究[J].气象与环境科学44(6): 1-8.DOI: 10. 16765/j.cnki.1673-7148.2021.06.001 .
null
王有恒, 谭丹, 韩兰英, 等, 2021.黄河流域气候变化研究综述[J].中国沙漠41(4): 235-246.DOI: 10.7522/j.issn.1000-694X. 2021.00086 .
null
吴佳, 高学杰, 2013.一套格点化的中国区域逐日观测资料及与其它资料的对比[J].地球物理学报56(4): 1102-1111.DOI: 10.6038/cjg20130406 .
null
肖风劲, 徐雨晴, 黄大鹏, 等, 2021.气候变化对黄河流域生态安全影响及适应对策[J].人民黄河43(1): 10-14, 52.DOI: 10. 3969/j.issn.1000-1379.2021.01.003 .
null
徐栋, 孔莹, 王澄海, 2016.西北干旱区水汽收支变化及其与降水的关系[J].干旱气象34(3): 431-439.DOI: 10.11755/j.issn. 1006-7639(2016)-03-0431 .
null
徐丽娇, 胡泽勇, 赵亚楠, 等, 2019.1961-2010年青藏高原气候变化特征分析[J].高原气象38(5): 911-919.DOI: 10.7522/j.issn.1000-0534.2018.00137 .
null
杨秀芹, 王国杰, 潘欣, 等, 2015.基于GLEAM遥感模型的中国1980-2011年地表蒸散发时空变化[J].农业工程学报31(21): 132-141.DOI: 10.11975/j.issn.1002-6819.2015.21.017 .
null
杨金虎, 张强, 杨博成, 等, 2022.黄河上游暖湿化的多时间尺度特征及对生态植被的影响[J/OL].高原气象, 1-13.[2022-11-30].
null
杨耀先, 胡泽勇, 路富全, 等, 2022.青藏高原近60年来气候变化及其环境影响研究进展[J].高原气象41(1): 1-10.DOI: 10. 7522/j.issn.1000-0534.2021.00117 .
null
叶培龙, 张强, 王莺, 等, 2020.1980-2018年黄河上游气候变化及其对生态植被和径流量的影响[J].大气科学学报43(6): 967-979.DOI: 10.13878/j.cnki.dqkxxb.20200924001 .
null
张雪芹, 孙杨, 毛炜峄, 等, 2010.中国干旱区气温变化对全球变暖的区域响应[J].干旱区研究27(4): 592-599.DOI: 10. 13866/j.azr.2010.04.012 .
null
张强, 朱飙, 杨金虎, 等, 2021.西北地区气候湿化趋势的新特征[J].科学通报66(28): 3757-3771.DOI: 10.1360/TB-2020-1396 .
null
郑子彦, 吕美霞, 马柱国, 2020.黄河源区气候水文和植被覆盖变化及面临问题的对策建议[J].中国科学院院刊35(1): 61-72.DOI: 10.16418/j.issn.1000-3045.20191230002 .
文章导航

/