收稿日期: 2022-10-17
修回日期: 2023-03-20
网络出版日期: 2023-11-14
基金资助
第二次青藏高原综合科学考察研究项目(2019QZKK0105); 四川省科技计划项目(2022YFS0536)
A Comparative Study on the Impact of MWHS-2 and MHS Data Assimilation on the Simulation of Rainstorm in the Three Rivers Source Area
Received date: 2022-10-17
Revised date: 2023-03-20
Online published: 2023-11-14
采用中尺度数值模式WRF(Weather Research and Forecasting)中FY-3C卫星MWHS-2(Micro-Wave Humidity Sounder 2)卫星资料的直接同化模块, 利用WRF-3DVAR(Three Dimensional Variation)方法对三江源地区的两次降水过程进行同化对比试验, 详细对比分析了FY-3C搭载的MWHS-2微波湿度仪和NOAA-18(National Oceanic and Atmospheric Administration-18)搭载的MHS(Microwave Humidity Sounder)微波湿度仪两种同化资料对模拟结果的影响。结果表明: MWHS-2和MHS资料同化的模拟结果基本一致, 对于30 mm以下的降水, 无论同化与否, 模拟的降水范围均会偏大; 但对于30 mm以上的降水, 模拟范围和量级均偏小。资料同化增强了500 hPa西南风场, 从而加大了水汽输送的强度, 使得高空槽偏向西南, 同时加强了300 hPa风场扰动, 在共同作用下从而导致了30 mm以上的降水范围的增大, 对降水量级结果能有一定改善, 但降水落区相较于实际偏南。卫星资料的同化会使得水汽通量场和比湿场的落区范围明显改善, 但对强度的改善作用并没有对落区的改善作用明显, 水汽通量场和比湿场的改变造成了降水预报落区和强度的改变。在温度场方面, WRF模式模拟的误差较大, 卫星资料的同化对温度场有一定的改善作用, 但不如对湿度场的改善作用明显。因而, MWHS-2或MHS卫星资料的同化对三江源降水模拟有一定的改善作用, 该研究结果对三江源降水的预报改进能有重要指导意义。
陈旭 , 王磊 , 李谢辉 , 钟浩斌 , 邓徐慧 . MWHS-2和MHS资料同化对三江源地区暴雨模拟影响的对比研究[J]. 高原气象, 2023 , 42(6) : 1386 -1401 . DOI: 10.7522/j.issn.1000-0534.2023.00024
Based on the mid-scale WRF (Weather Research and Forecasting) numerical model, this study uses the direct assimilation module data from the FY-3C satellite MWHS-2 (Micro-Wave Humidity Sounder 2), and the WRF-3DVAR (Three Dimensional Variation) method to conduct assimilation comparison experiments on two precipitation processes in the Three Rivers Source area.Moreover, this study extensively compares the effects of two assimilation data sets on simulation results: data from the MWHS-2 (microwave humidity instrument carried by FY-3C) and data from the MHS (Microwave Humidity Sounder) carried by NOAA-18 (National Oceanic and Atmospheric Administration-18).Results of the study show consistent simulation results for MWHS-2 and MHS data assimilation.For instance, regardless of whether assimilation is conducted or not, the simulated precipitation range is overestimated for precipitations less than 30 mm.However, the simulated range and amount are underestimated for precipitations higher than 30 mm.Furthermore, data assimilation strengthens the 500 hPa southwest wind field, increases the intensity of water vapour transport, shifts the high-altitude trough to the southwest, and strengthens the 300 hPa wind field disturbance, all of which increase the precipitation range above 30 mm and, to a certain extent, improve the precipitation level results.However, compared to the actual situation, the precipitation area is biased southward.Satellite data assimilation significantly improves the range of the water vapour flux field and specific humidity field precipitation areas, but its effects on the intensity improvement are not obvious.At the same time, changes in the water vapour flux field and specific humidity field change the precipitation forecast area and intensity.As for the temperature field, the WRF simulation includes significant errors.Satellite data assimilation shows a certain improvement effect on the temperature field and a more significant improvement effect on the humidity field.In other words, MWHS-2 or MHS satellite data assimilation improves the precipitation forecast in the Three Rivers Source area.These conclusions provide significant guidance for improving the precision of precipitation forecasting in the Three Rivers Source area.
Key words: the Three Rivers Source; torrential rain; WRF; assimilation; MWHS-2; MHS
null | |
null | |
null | |
null | Dudhia, J, 1989.Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model[J].Journal of the Atmospheric Sciences, 46(20): 3077-3107. |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | 蔡永祥, 罗少辉, 王军, 等, 2022.三江源地区1961-2019年降水量时空变化特征[J].草业科学, 39(1): 10-20. |
null | 陈耀登, 郭闪, 王元兵, 等, 2020.基于优化样本组合的集合-变分混合同化方案研究[J].热带气象学报, 36(4): 13. |
null | 李红梅, 申红艳, 汪青春, 等, 2021.1961-2017年青海高原雨季和降水的变化特征[J].高原气象, 40(5): 1038-1047.DOI: 10. 7522/j.issn.1000-0534.2020.00113 . |
null | 刘硕松, 董佩明, 韩威, 等, 2012.RTTOV和CRTM对“罗莎”台风卫星微波观测的模拟研究与比较[J].气象学报, 70(3): 13.DOI: 10.11676/qxxb2012.048 . |
null | 毛璐, 谢彦辉, 刘瑞霞, 等, 2022.FY-3C微波湿度计辐射率资料同化对RMAPS-ST系统的降水预报影响[J].高原气象, 41(4): 896-908.DOI: 10.7522/j.issn.1000-0534.2021.00025 . |
null | 强安丰, 魏加华, 解宏伟, 2019.三江源区大气水汽含量时空特征及其转化变化[J].水利水电快报, 40(5): 5. |
null | 沈程锋, 李国平, 2022.基于GPM资料的四川盆地及周边地区夏季地形降水垂直结构研究[J].高原气象, 41(6): 1532-1543.DOI: 10.7522/j.issn.1000-0534.2021.0116 . |
null | 孙璐, 陈思远, 潘贤, 等, 2022.华南暖区暴雨预报的模式初始场质量敏感性分析[J].气象科学, 42(3): 356-367. |
null | 吴应昂, 2015.FY-3C卫星微波辐射资料同化应用研究[D].北京: 国防科学技术大学. |
null | |
null | 于晓晶, 韩威, 马秀梅, 等, 2018.卫星微波辐射资料同化在新疆降水预报中的应用初探[J].暴雨灾害, 37(4): 10.DOI: 10. 3969/j.issn.1004-9045.2018.04.006 . |
null | 周校立, 官莉, 2023.RTTOV中模拟亮温对垂直插值方案的敏感性研究[J].科学技术创新(4): 212-216. |
null | 庄照荣, 李兴良, 陈静, 等, 2020.GRAPES Hybrid-3DVar对台风苏迪罗的数值试验[J].大气科学, 44(5): 1076-1092. |
/
〈 |
|
〉 |