论文

围栏封育下藏北高寒湿地和高寒草原水热通量特征研究

  • 王壮壮 ,
  • 吕雅琼 ,
  • 魏达 ,
  • 祁亚辉 ,
  • 王小丹
展开
  • 1. 中国科学院水利部成都山地灾害与环境研究所,四川 成都 610041
    2. 中国科学院大学,北京 100049

王壮壮(1996 -), 男, 河南周口人, 硕士研究生, 主要从事青藏高原水热通量观测与模拟研究. E-mail:

收稿日期: 2022-07-17

  修回日期: 2023-01-19

  网络出版日期: 2023-11-14

基金资助

青藏高原第二次综合科学考察研究项目(2019QZKK0404); 国家自然科学基金项目(41971145); 中国科学院战略性先导科技专项(A类)泛第三极环境变化与绿色丝绸之路建设(XDA20020401); 中国科学院青年创新促进会项目(2020369)

Water and Heat Flux Characteristics of Alpine Wetland and Alpine Steppe under Grazing Enclosure on the Northern Xizang

  • Zhuangzhuang WANG ,
  • Yaqiong Lü ,
  • Da WEI ,
  • Yahui QI ,
  • Xiaodan WANG
Expand
  • 1. Institute of Mountain Hazards and Environment,Chinese Academy of Sciences,Chengdu 610041,Sichuan,China
    2. University of Chinese Academy of Sciences,Beijing 100049,China

Received date: 2022-07-17

  Revised date: 2023-01-19

  Online published: 2023-11-14

摘要

围栏封育作为直接有效的退化草地恢复治理模式, 广泛应用于青藏高原退化草地恢复。围栏封育显著提升植被覆盖并改变地表与大气之间的水热交换, 然而当前对其如何影响高寒生态系统水热通量的定量研究不足, 缺乏对影响机制的认识。本研究以藏北腹地典型高寒湿地和高寒草原为研究对象, 采用涡度相关技术开展禁牧-放牧配对观测, 并基于围栏内外2019年7月至2021年6月连续两年的观测数据, 探究围栏封育后的地表水热平衡变化, 以提升对围栏封育改变地表水热通量机制的认知。结果显示: 高寒草原和高寒湿地生态系统水热通量均表现出明显的单峰型日变化特征, 且分别以感热作用(波文比为1.60)、 潜热作用(波文比为0.31)为主导向大气传输能量。围栏封育降低了高寒草原地表通量值, 感热通量减小5.99 W·m-2, 潜热通量减小4.84 W·m-2; 围栏封育提升了高寒湿地的地表通量值, 感热通量增加3.04 W·m-2, 潜热通量增加30.95 W·m-2, 围栏封育后高寒草原感热通量和潜热通量日均值均下降, 高寒湿地则增加。围栏封育对地表能量通量影响强度集中于白天, 夜间较弱。高寒生态系统的31组禁牧-放牧配对数据显示, 围栏封育降低高寒生态系统土壤温度, 提升土壤持水能力。基于土壤温度、 土壤湿度、 潜热通量和感热通量视角, 围栏封育对高寒生态系统存在降温潜力。

本文引用格式

王壮壮 , 吕雅琼 , 魏达 , 祁亚辉 , 王小丹 . 围栏封育下藏北高寒湿地和高寒草原水热通量特征研究[J]. 高原气象, 2023 , 42(6) : 1416 -1428 . DOI: 10.7522/j.issn.1000-0534.2023.00005

Abstract

Grazing enclosure has been extensively employed as a direct and effective management measure for grassland restoration on the Qinghai-Xizang Plateau.Enclosures significantly increased vegetation coverage and affected the water and heat exchange between the land surface and the atmosphere.However, there is still a lack of quantitative research on how enclosures regulates water and heat fluxes in typical alpine ecosystems.Based on continuous data observed from eddy covariance system from July 2019 to June 2021 at alpine steppe and alpine wetland of the Northern Xizang, the changes of surface energy flux after enclosure was analyzed by using the eddy covariance method.The results show that: The water and heat fluxes in alpine steppe and alpine wetland shows significant unimodal diurnal variations.The exchange of land-atmosphere in alpine steppe is mainly dominated by sensible heat (Bowen ratio: 1.60) except in Summer, while wetland mainly transfers energy to the atmosphere by latent heat (Bowen ratio: 0.31) whole year.Grazing enclosure decreased the surface fluxes in alpine steppe, the sensible heat flux reduced by 5.99 W·m-2 and the latent heat flux increased by 4.84 W·m-2.Grazing enclosures increased the surface fluxes in alpine wetland, the sensible and latent heat raised by 3.04 W·m-2 and 30.95 W·m-2, respectively.The daily and average sensible and latent heat fluxes decreased in alpine steppe but increased in alpine wetland.The effect of enclosure on surface energy fluxes was stronger during the day and weaker at night.The collected literature data demonstrated that fencing decreased soil temperature and increased soil water holding capacity.Given the data of soil temperature, soil moisture, latent heat flux, and sensible heat flux, our study shows the cooling potential of enclosure on alpine steppe and alpine wetland.

参考文献

null
An T T Xu M J Zhang T, et al, 2019.Grazing alters environmental control mechanisms of evapotranspiration in an alpine meadow of the Tibetan Plateau[J].Journal of Plant Ecology12(5): 834-845.DOI: 10.1093/jpe/rtz021 .
null
Borges C K Dos Santos C A C Carneiro R G, et al, 2020.Seasonal variation of surface radiation and energy balances over two contrasting areas of the seasonally dry tropical forest (Caatinga) in the Brazilian semi-arid[J].Environmental Monitoring and Assessment192(8): 1-18.DOI: 10.1007/s10661-020-08484-y .
null
Bremer D J Auen L M Ham J M, et al, 2001.Evapotranspiration in a prairie ecosystem: effects of grazing by cattle[J].Agronomy Journal93(2): 338-348.DOI: 10.2134/agronj2001.932338x .
null
Chen J Shi W Y Cao J J2015.Effects of grazing on ecosystem CO2 exchange in a meadow grassland on the Tibetan Plateau during the growing season[J].Environmental Management55(2): 347-359.DOI: 10.1007/s00267-014-0390-z .
null
Chen J Zhou X H Wang J F, et al, 2016.Grazing exclusion reduced soil respiration but increased its temperature sensitivity in a Meadow Grassland on the Tibetan Plateau[J].Ecology and Evolution6(3): 675-687.DOI: 10.1002/ece3.1867 .
null
Chen S P Chen J Q Lin G H, et al, 2009.Energy balance and partition in Inner Mongolia steppe ecosystems with different land use types[J].Agricultural and Forest Meteorology149(11): 1800-1809.DOI: 10.1016/j.agrformet.2009.06.009 .
null
Cui J P Lian X Huntingford C, et al, 2022.Global water availability boosted by vegetation-driven changes in atmospheric moisture transport[J].Nature Geoscience15(12): 982-988.DOI: 10.1038/s41561-022-01061-7 .
null
Du C J Zhou G Y Gao Y H2022.Grazing exclusion alters carbon flux of alpine meadow in the Tibetan Plateau[J].Agricultural and Forest Meteorology, 314: 108774.DOI: 10.1016/j.agrformet. 2021.108774 .
null
Duan A M Wu G X2008.Weakening trend in the atmospheric heat source over the Tibetan plateau during recent decades.Part I: Observations[J].Journal of Climate21(13): 3149-3164.DOI: 10.1175/2007JCLI1912.1 .
null
Foken T Wichura B1996.Tools for quality assessment of surface-based flux measurements[J].Agricultural and Forest Meteorology78(1-2): 83-105.DOI: 10.1016/0168-1923(95)02248-1 .
null
Fu Y F Ma Y M Zhong L, et al, 2020.Land-surface processes and summer-cloud-precipitation characteristics in the Tibetan Plateau and their effects on downstream weather: a review and perspective[J].National Science Review7(3): 500-515.DOI: 10. 1093/nsr/nwz226 .
null
Gao Y H Zeng X Y Schumann M, et al, 2011.Effectiveness of exclosures on restoration of degraded alpine meadow in the Eastern Tibetan Plateau[J].Arid Land Research and Management25(2): 164-175.DOI: 10.1080/15324982.2011.554954 .
null
Guo L M Chang J Xu H L, et al, 2021.Modelling plant canopy effects on water-heat exchange in the freezing-thawing processes of active layer on the Qinghai-Tibet Plateau[J].Journal of Mountain Science18(6): 1564-1579.DOI: 10.1007/s11629-020-6335-5 .
null
Han Y Z Ma W Q Ma Y M, et al, 2019.Variations of surface heat fluxes over the Tibetan Plateau before and after the onset of the South Asian Summer Monsoon during 1979-2016[J].Journal of Meteorological Research33(3): 491-500.DOI: 10.1007/s13351-019-8616-x .
null
Huang K Zhang Y J Zhu J T, et al, 2016.The influences of climate change and human activities on vegetation dynamics in the Qinghai-Tibet Plateau[J].Remote Sensing8(10): 876.DOI: 10. 3390/rs8100876 .
null
Kato T Tang Y H Gu S, et al, 2006.Temperature and biomass influences on interannual changes in CO2 exchange in an alpine meadow on the Qinghai-Tibetan Plateau[J].Global Change Biology12(7): 1285-1298.DOI: 10.1111/j.1365-2486.2006.01153.x .
null
Li G Y Jiang C H Cheng T, et al, 2019.Grazing alters the phenology of alpine steppe by changing the surface physical environment on the northeast Qinghai-Tibet Plateau, China[J].Journal of Environmental Management, 248: 109257.DOI: 10.1016/j.jenvman.2019.07.028 .
null
Li W Cao W X Wang J L, et al, 2017.Effects of grazing regime on vegetation structure, productivity, soil quality, carbon and nitrogen storage of alpine meadow on the Qinghai-Tibetan Plateau[J].Ecological Engineering, 98: 123-133.DOI: 10.1016/j.ecoleng.2016.10.026 .
null
Li W Liu Y Z Wang J L, et al, 2018.Six years of grazing exclusion is the optimum duration in the alpine meadow-steppe of the north-eastern Qinghai-Tibetan Plateau[J].Scientific Reports8(1): 17269.DOI: 10.1038/s41598-018-35273-y .
null
Liu M Zhang Z C Sun J, et al, 2020.One-year grazing exclusion remarkably restores degraded alpine meadow at Zoige, eastern Tibetan Plateau[J].Global Ecology and Conservation, 22: e00951.DOI: 10.1016/j.gecco.2020.e00951 .
null
Liu Y C Li Z Chen Y N, et al, 2022.Biophysical impacts of vegetation dynamics largely contribute to climate mitigation in High Mountain Asia[J].Agricultural and Forest Meteorology, 327: 109233.DOI: 10.1016/j.agrformet.2022.109233 .
null
Liu Y W, Tenzintarchen, Geng X D, et al, 2020.Grazing exclusion enhanced net ecosystem carbon uptake but decreased plant nutrient content in an alpine steppe[J].Catena, 195: 104799.DOI: 10.1016/j.catena.2020.104799 .
null
Lu F Hu H F Sun W J, et al, 2018.Effects of national ecological restoration projects on carbon sequestration in China from 2001 to 2010[J].Proceedings of the National Academy of Sciences115(16): 4039-4044.DOI: 10.1073/pnas.1700294115 .
null
Luo C Y Xu G P Wang Y F, et al, 2009.Effects of grazing and experimental warming on DOC concentrations in the soil solution on the Qinghai-Tibet plateau[J].Soil Biology and Biochemistry41(12): 2493-2500.DOI: 10.1016/j.soilbio.2009.09.006 .
null
Pan T Zou X T Liu Y J, et al, 2017.Contributions of climatic and non-climatic drivers to grassland variations on the Tibetan Plateau[J].Ecological Engineering, 108: 307-317.DOI: 10.1016/j.ecoleng.2017.07.039 .
null
Qi Y H Wei D Zhao H, et al, 2021.Carbon sink of a very high marshland on the Tibetan Plateau[J].Journal of Geophysical Research: Biogeosciences126(4): e2020JG006235.DOI: 10. 1029/ 2020JG006235 .
null
Shang Z H Cao J J Guo R Y, et al, 2017.Effect of Enclosure on soil carbon, nitrogen and phosphorus of alpine desert rangeland[J].Land Degradation & Development28(4): 1166-1177.DOI: 10.1002/ldr.2283 .
null
Shao C Chen J Li L, et al, 2012.Ecosystem responses to mowing manipulations in an arid Inner Mongolia steppe: an energy perspective[J].Journal of Arid Environments, 82: 1-10.DOI: 10. 1016/j.jaridenv.2012.02.019 .
null
Sun J Liu M Fu B J, et al, 2020.Reconsidering the efficiency of grazing exclusion using fences on the Tibetan Plateau[J].Science Bulletin65(16): 1405-1414.DOI: 10.1016/j.scib.2020.04.035 .
null
Te Beest M Sitters J Ménard C B, et al, 2016.Reindeer grazing increases summer albedo by reducing shrub abundance in Arctic tundra[J].Environmental Research Letters11(12): 125013.DOI: 10.1088/1748-9326/aa5128 .
null
Wang L Yu H Y Zhang Q, et al, 2018.Responses of aboveground biomass of alpine grass-lands to climate changes on the Qinghai-Tibet Plateau[J].Journal of Geographical Sciences28(12): 1953-1964.DOI: 10.1007/s11442-019-1573-y .
null
Wang Y F Lv W W Xue K, et al, 2022.Grassland changes and adaptive management on the Qinghai-Tibetan Plateau[J].Nature Reviews Earth & Environment3(10): 668-683.DOI: 10.1038/s43017-022-00330-8 .
null
Wang Z Q Zhang Y Z Yang Y, et al, 2016.Quantitative assess the driving forces on the grassland degradation in the Qinghai-Tibet Plateau, in China[J].Ecological Informatics, 33: 32-44.DOI: 10.1016/j.ecoinf.2016.03.006 .
null
Wei D Zhao H Zhang J X, et al, 2020.Human activities alter response of alpine grasslands on Tibetan Plateau to climate change[J].Journal of Environmental Management, 262: 110335.DOI: 10.1016/j.jenvman.2020.110335 .
null
Wilczak J M Oncley S P Stage S A2001.Sonic anemometer tilt correction algorithms[J].Boundary-Layer Meteorology99(1): 127-150.DOI: 10.1023/A: 1018966204465 .
null
Wilson K Goldstein A Falge E, et al, 2002.Energy balance closure at FLUXNET sites[J].Agricultural and Forest Meteorology113(1-4): 223-243.DOI: 10.1016/S0168-1923(02)00109-0 .
null
Wu G L Liu Z H Zhang L, et al, 2010.Long-term fencing improved soil properties and soil organic carbon storage in an alpine swamp meadow of western China[J].Plant and Soil332(1-2): 331-337.DOI: 10.1007/s11104-010-0299-0 .
null
Wu J S Feng Y F Zhang X Z, et al, 2017.Grazing exclusion by fencing non-linearly restored the degraded alpine grasslands on the Tibetan Plateau[J].Scientific Reports7(1): 15202.DOI: 10.1038/s41598-017-15530-2 .
null
Yao T D Wang N L1997.Ice core study-the past, the present and the future[J].Chinese Science Bulletin42(13): 1057-1064.
null
Yao X X Wu J P Gong X Y, et al, 2019.Effects of long term fencing on biomass, coverage, density, biodiversity and nutritional values of vegetation community in an alpine meadow of the Qinghai-Tibet Plateau[J].Ecological Engineering, 130: 80-93.DOI: 10.1016/j.ecoleng.2019.01.016 .
null
You Q G Xue X Peng F, et al, 2017.Surface water and heat exchange comparison between alpine meadow and bare land in a permafrost region of the Tibetan Plateau[J].Agricultural and Forest Meteorology, 232: 48-65.DOI: 10.1016/j.agrformet. 2016. 08.004 .
null
You Q G Xue X Peng F, et al, 2014.Comparison of ecosystem characteristics between degraded and intact alpine meadow in the Qinghai-Tibetan Plateau, China[J].Ecological Engineering, 71: 133-143.DOI: 10.1016/j.ecoleng.2014.07.022 .
null
Yu G R Wen X F Sun X M, et al, 2006.Overview of ChinaFLUX and evaluation of its eddy covariance measurement[J].Agricultural and Forest Meteorology137(3-4): 125-137.DOI: 10. 1016/j.agrformet.2006.02.011 .
null
Yu L F Chen Y Sun W J, et al, 2019.Effects of grazing exclusion on soil carbon dynamics in alpine grasslands of the Tibetan Plateau[J].Geoderma, 353: 133-143.DOI: 10.1016/j.geoderma.2019.06.036 .
null
Zhang X Liu X Zhang L F, et al, 2019.Comparison of energy partitioning between artificial pasture and degraded meadow in three-river source region on the Qinghai-Tibetan Plateau: a case study[J].Agricultural and Forest Meteorology, 271: 251-263.DOI: 10.1016/j.agrformet.2019.02.046 .
null
Zhang X Z Li M Wu J S, et al, 2022.Alpine grassland aboveground biomass and theoretical livestock carrying capacity on the Tibetan Plateau[J].Journal of Resources and Ecology13(1): 129-141.DOI: 10.5814/j.issn.1674-764x.2022.01.015 .
null
Zhang Y J Zhang X Q Wang X Y, et al, 2014.Establishing the carrying capacity of the grasslands of China: a review[J].The Rangeland Journal36(1): 1-9.DOI: 10.1071/Rj13033 .
null
Zhao J X Li R C Tian L H, et al, 2022.Microtopographic heterogeneity mediates the soil respiration response to grazing in an alpine swamp meadow on the Tibetan Plateau[J].Catena, 213: 106158.DOI: 10.1016/j.catena.2022.106158 .
null
Zhao J X Li X Li R C, et al, 2016.Effect of grazing exclusion on ecosystem respiration among three different alpine grasslands on the central Tibetan Plateau[J].Ecological Engineering, 94: 599-607.DOI: 10.1016/j.ecoleng.2016.06.112 .
null
Zhao X L Wang J B Ye H, et al, 2021.The Bowen Ratio of an alpine grassland in Three-River Headwaters, Qinghai-Tibet Plateau, from 2001 to 2018[J].Journal of Resources and Ecology12(3): 305-318.DOI: 10.5814/j.issn.1674-764x.2021.03.001 .
null
Zhong L Wang S P Xu X L, et al, 2018.Fungi regulate the response of the N2O production process to warming and grazing in a Tibetan grassland[J].Biogeosciences15(14): 4447-4457.DOI: 10.5194/bg-15-4447-2018 .
null
曹静娟, 2010.祁连山草地管理方式变化对土壤有机碳、 氮库的影响[M].兰州: 甘肃农业大学: 1- 63.
null
曾剑, 张强, 王胜, 2011.中国北方不同气候区晴天陆面过程区域特征差异[J].大气科学35(3): 483-494.DOI: 10.3878/j.issn.1006-9895.2011.03.09 .
null
陈海山, 倪东鸿, 李忠贤, 等, 2006.植被覆盖异常变化影响陆面状况的数值模拟[J].南京气象学院学报29(6): 725-734.DOI: 10.3969/j.issn.1674-7097.2006.06.001 .
null
陈骥, 曹军骥, 魏永林, 等, 2014.青海湖北岸高寒草甸草原非生长季土壤呼吸对温度和湿度的响应[J].草业学报23(6): 78-86.DOI: 10.11686/cyxb20140610 .
null
陈智勇, 谢迎新, 刘苗, 2019.围栏封育高寒草地植物地上生物量和物种多样性对关键调控因子的响应[J].草业科学36(4): 1000-1009.DOI: CNKI: SUN: CYKX.0.2019-04-008 .
null
翟文婷, 陈懂懂, 李奇, 等, 2017.放牧强度对环青海湖地区高寒草原土壤微生物群落碳代谢特征的影响[J].应用与环境生物学报23(4): 685-692.DOI: CNKI: SUN: YYHS.0.2017-04-014 .
null
丁明军, 张镱锂, 刘林山, 等, 2010.青藏高原植被覆盖对水热条件年内变化的响应及其空间特征[J].地理科学进展29(4): 507-512.DOI: 10.11820/dlkxjz.2010.04.018 .
null
管晓丹, 石瑞, 孔祥宁, 等, 2018.全球变化背景下半干旱区陆气机制研究综述[J].地球科学进展33(10): 995-1004.DOI: CNKI: SUN: DXJZ.0.2018-10-004 .
null
郭燕红, 张寅生, 马颖钊, 等, 2014.藏北羌塘高原双湖地表热源强度及地表水热平衡[J].地理学报69(7): 983-992.DOI: 10. 11821/dlxb201407010 .
null
胡金娇, 周青平, 吕一河, 等, 2020.青藏高原东缘半湿润沙地典型生态恢复模式的效果比较研究[J].生态学报40(20): 7410-7418.DOI: 10.5846/stxb201910102111 .
null
胡媛媛, 仲雷, 马耀明, 等, 2018.青藏高原典型下垫面地表能量通量的模型估算与验证[J].高原气象37(6): 1499-1510.DOI: CNKI: SUN: GYQX.0.2018-06-005 .
null
拉巴卓玛, 德吉央宗, 拉巴, 等, 2017.近40a西藏那曲当惹雍错湖泊面积变化遥感分析[J].湖泊科学29(2): 480-489.DOI: 10.18307/2017.0224 .
null
李红琴, 张法伟, 毛绍娟, 等, 2019.放牧强度对青海海北高寒矮嵩草草甸碳交换的影响[J].中国草地学报41(2): 16-21.DOI: CNKI: SUN: ZGCD.0.2019-02-003 .
null
李文, 曹文侠, 徐长林, 等, 2015.不同休牧模式对高寒草甸草原土壤特征及地下生物量的影响[J].草地学报23(2): 271-276.DOI: CNKI: SUN: CDXU.0.2015-02-009 .
null
罗琪, 文军, 王欣, 等, 2017.黄河源高寒湿地-大气间水热和碳交换通量日变化特征的观测分析[J].高原气象36(3): 667-674.DOI: 10.7522/j.issn.1000-0534.2016.00062 .
null
马耀明, 塚本修, 吴晓鸣, 等, 2000.藏北高原草甸下垫面近地层能量输送及微气象特征[J].大气科学24(5): 715-722.DOI: 10.1007/s10011-000-0335-3 .
null
朴世龙, 张宪洲, 汪涛, 等, 2019.青藏高原生态系统对气候变化的响应及其反馈[J].科学通报64(27): 2842-2855.DOI: CNKI: SUN: KXTB.0.2019-27-010 .
null
乔春连, 王基恒, 葛世栋, 等, 2012.围封和放牧条件下高寒矮嵩草草甸土壤性质的比较[J].草业科学29(3): 341-345.
null
汤秋鸿, 刘宇博, 张弛, 等, 2020.青藏高原及其周边地区降水的水汽来源变化研究进展[J].大气科学学报43(6): 1002-1009.DOI: 10.13878/j.cnki.dqkxxb.20201003001 .
null
王力, 张强, 2018.近20年青藏高原典型高寒草甸化草原植物物候变化特征[J].高原气象37(6): 1528-1534.DOI: 10.7522/j.issn.1000-0534.2018.00090 .
null
魏彦强, 芦海燕, 王金牛, 等, 2019.近35年青藏高原植被带变化对气候变化及人类活动的响应[J].草业科学36(4): 1163-1176.DOI: 10.11829/j.issn.1001-0629.2019-0027 .
null
吴国雄, 刘屹岷, 何编, 等, 2018.青藏高原感热气泵影响亚洲夏季风的机制[J].大气科学42(3): 488-504 DOI: 10.3878/j.issn.1006-9895.1801.17279 .
null
徐祥德, 陈联寿, 2006.青藏高原大气科学试验研究进展[J].应用气象学报17(6): 756-772.
null
徐自为, 刘绍民, 徐同仁, 等, 2009.涡动相关仪观测蒸散量的插补方法比较[J].地球科学进展24(4): 372-382.DOI: 10.3321/j.issn: 1001-8166.2009.04.003 .
null
严晓强, 胡泽勇, 孙根厚, 等, 2019.那曲高寒草地长时间地面热源特征及其气候影响因子分析[J].高原气象38(2): 253-263.DOI: 10.7522/j.issn.1000-0534.2018.00091 .
null
阳坤, 郭晓峰, 武炳义, 2010.青藏高原地表感热通量的近期变化趋势[J].中国科学: 地球科学40(7): 923-932.DOI: 10. 3724/SP.J.1011.2010.01081 .
null
杨大文, 张树磊, 徐翔宇, 2015.基于水热耦合平衡方程的黄河流域径流变化归因分析[J].中国科学: 技术科学45(10): 1024-1034.
null
杨军, 詹伟, 王向涛, 2020.10年围栏封育对藏北退化高寒草甸植物群落特征的影响[J].中国草地学报42(6): 44-49.DOI: 10.16742/j.zgcdxb.20190143 .
null
姚檀栋, 邬光剑, 徐柏青, 等, 2019.“亚洲水塔”变化与影响[J].中国科学院院刊34(11): 1203-1209.DOI: 10.16418/j.issn. 1000-3045.2019.11.003 .
null
叶笃正, 罗四维, 朱抱真, 1957.西藏高原及其附近的流场结构和对流层大气的热量平衡[J].气象学报28(2): 108-121.DOI: 10.11676/qxxb1957.010 .
null
益西措姆, 许岳飞, 付娟娟, 等, 2014.放牧强度对西藏高寒草甸植被群落和土壤理化性质的影响[J].西北农林科技大学学报: 自然科学版42(6): 27-33.DOI: 10.13207/j.cnki.jnwafu. 2014.06.028 .
null
于威, 刘屹岷, 杨修群, 等, 2018.青藏高原不同海拔地表感热的年际和年代际变化特征及其成因分析[J].高原气象37(5): 1161-1176.DOI: 10.7522/j.issn.1000-0534.2018.00027 .
null
泽让东科, 文勇立, 艾鷖, 等, 2016.放牧对青藏高原高寒草地土壤和生物量的影响[J].草业科学33(10): 1975-1980.DOI: 10. 11829/j.issn.1001-0629.2016-0152 .
null
张强, 孙昭萱, 王胜, 2011.黄土高原定西地区陆面物理量变化规律研究[J].地球物理学报54(7): 1727-1737.DOI: 10.3969/j.issn.0001-5733.2011.07.005 .
null
张强, 王胜, 2007.干旱荒漠区土壤水热特征和地表辐射平衡年变化规律研究[J].自然科学进展17(2): 211-216.DOI: 10. 3321/j.issn: 1002-008X.2007.02.009 .
null
张宪洲, 杨永平, 朴世龙, 等, 2015.青藏高原生态变化[J].科学通报60(32): 3048-3056.DOI: 10.1360/n972014-01339 .
null
仲雷, 葛楠, 马耀明, 等, 2021.利用静止卫星估算青藏高原全域地表潜热通量[J].地球科学进展36(8): 773-784.DOI: 10. 11867/j.issn.1001-8166.2021.054 .
null
周天阳, 高景, 王金牛, 等, 2018.基于群落结构及土壤理化性质对围封7年青藏高原东南缘高山草地的综合评价[J].草业学报27(12): 1-11.DOI: 10.11686/cyxb2018084 .
null
周文昌, 索郎夺尔基, 崔丽娟, 等, 2015.围栏禁牧与放牧对若尔盖高原泥炭地CO2和CH4排放的影响[J].生态环境学报24(2): 183-189.
null
卓嘎, 陈思蓉, 周兵, 2018.青藏高原植被覆盖时空变化及其对气候因子的响应[J].生态学报38(9): 3208-3218.DOI: 10. 5846/stxb201705270985 .
文章导航

/