论文

对流解析与对流参数化方案模拟青藏高原夏季降水对比研究

  • 陈颖 ,
  • 杨显玉 ,
  • 吕雅琼 ,
  • 文军 ,
  • 朱家宁
展开
  • 1. 成都信息工程大学 大气科学学院/高原大气与环境四川省重点实验室,四川 成都 610225
    2. 中国科学院、 水利部成都山地灾害与环境研究所,四川 成都 610041

陈颖(1998 -), 女, 四川绵阳人, 硕士研究生, 主要从事陆气相互作用与数值模拟研究. E-mail:

收稿日期: 2022-09-08

  修回日期: 2023-02-28

  网络出版日期: 2023-11-14

基金资助

国家自然科学基金项目(41975135); 中国科学院先导专项(XDA23060601); 成都信息工程大学教师科技创新能力提升计划项目(KYQN202239)

Comparative Analysis of Convection Permitting Model and Cumulus Parameterization for Simulation of Summer Precipitation over Qinghai-XizangTibetanPlateau

  • Ying CHEN ,
  • Xianyu YANG ,
  • Yaqiong Lü ,
  • Jun WEN ,
  • Jianing ZHU
Expand
  • 1. College of Atmospheric Sciences,Chengdu University of Information Technology / Sichuan Key Laboratory of Plateau Atmosphere and Environment,Chengdu 610225,Sichuan,China
    2. Institute of Mountain Hazards and Environment,Chinese Academy of Sciences,Chengdu 610041,Sichuan,China

Received date: 2022-09-08

  Revised date: 2023-02-28

  Online published: 2023-11-14

摘要

青藏高原被称为“亚洲水塔”, 其水资源的变化对下游的天气气候有重要的影响。降水是水循环的关键环节, 因此, 准确模拟青藏高原降水对我国水资源安全有重大意义。近年来, 一些研究发现对流解析模拟(即当网格尺度小于4 km时关闭对流参数化方案的模拟)能够提升青藏高原降水的模拟效果, 然而, 这些研究仅仅选取了1~3种对流参数化方案来进行对比研究, 对流解析模拟是否优于任意对流参数化方案仍然未知。本文评估了WRF模式中9种积云对流参数化方案与不使用对流参数化方案的对流解析模拟(Convection-Permitting Modeling, CPM)对2009年夏季青藏高原地区降水的模拟能力。结果表明: 模拟总体高估了青藏高原2009年夏季降水, 存在0.4~2.0 mm·d-1的误差, 对青藏高原CAPE值和潜热通量的模拟过大可能是造成青藏高原降水模拟偏大的原因之一。在所有模拟中, G3积云对流参数化方案对平均降水和日变化的模拟效果最好, 能更好地模拟出平均降水的降水强度、 空间分布和降水落区以及降水日变化。CPM对降水整体的模拟效果次于G3积云对流参数化方案, 不能有效地改善对降水日变化的模拟, 但是可以改进对降水频率的模拟。在不同高原生态区内, 所有模拟都不能合理地模拟出荒漠区和喜马拉雅南麓的降水, 但相较于参数化方案, CPM可以大大地降低荒漠区的误差。在其他区域内, CPM和Tiedtke积云对流参数化方案的表现都较好。综合平均降水和降水频率, CPM、 Tiedtke和G3积云对流参数化方案对不同区域、 不同强度的降水模拟误差最小。因此我们建议: 模拟青藏高原夏季降水时可优先考虑G3和Tiedtke积云对流参数化方案, 在计算资源充足时, 可以考虑采用高分辨率的对流解析来提高青藏高原降水频率的模拟。

本文引用格式

陈颖 , 杨显玉 , 吕雅琼 , 文军 , 朱家宁 . 对流解析与对流参数化方案模拟青藏高原夏季降水对比研究[J]. 高原气象, 2023 , 42(6) : 1429 -1443 . DOI: 10.7522/j.issn.1000-0534.2023.00016

Abstract

The Qinghai-Xizang (Tibetan) Plateau is known as the Asian water tower.The change of its water resources has an important impact on the weather and climate in the lower reaches.Precipitation is a key role in the water cycle.Therefore, it is of great significance to accurately simulate plateau precipitation for water resources security in China.In recent years, some studies have found that the convection-permitting model (the cumulus parameterization scheme could be turned off when grid scale is less than 4 km) could improve the precipitation simulation over the Qinghai-Xizang (Tibetan) Plateau.However, the previous studies only selected 1~3 cumulus parameterization schemes for comparison.It is still unknown whether convection-permitting model is superior to any cumulus parameterization scheme.In this paper, the ability of nine cumulus parameterization schemes in WRF and convection-permitting model (CPM) in simulating the precipitation over the Qinghai-Xizang (Tibetan) Plateau in the summer of 2009 was evaluated.The results showed that the simulations overestimate the summer precipitation over Qinghai-Xizang (Tibetan) Plateau in 2009, and the error was about 0.4~2 mm·d-1.The over simulation of CAPE and latent heat flux in Qinghai-Xizang (Tibetan) Plateau may be one of the reasons for the overestimations.Among all simulations, the G3 cumulus parameterization scheme has the best simulation of the mean precipitation the mean precipitation and the dinural cycles precipitation and it can can better capture the precipitation intensity, spatial distribution, precipitation area and diurnal cycles of the mean precipitation.CPM showed overall the second best precipitation simulation following G3 cumulus parameterization scheme, which can not effectively improve the simulation of diurnal cycles of precipitation, but can improve the simulation of precipitation frequency.In different plateau ecological regions, all simulations cannot reasonably simulate the precipitation in the desert area and the southern foot of the Himalaya, but compared with the cumulus parameterization schemes, CPM can greatly reduce the error in the desert area.In other regions, CPM and Tiedtke cumulus parameterization scheme performed well.Considering the mean precipitation and precipitation frequency, the CPM, Tiedtke and G3 cumulus parameterization scheme have the minimum simulation error for precipitation in different regions and intensity.Therefore, we recommend to adopt G3 or Tiedtke cumulus parameterization schemes in simulating summer precipitation over the Qinghai-Xizang (Tibetan) Plateau, and when the computational resources are allowed, the high-resolution CPM can be considered to improve the precipitation frequency simulations.

参考文献

null
Cai S X Huang A N Zhu K F, et al, 2021.Diurnal cycle of summer precipitation over the Eastern Tibetan Plateau and surrounding regions simulated in a convection-permitting model[J].Climate Dynamics57(1/2): 611-32.DOI: 10.1007/s00382-021-05729-5 .
null
Chen D Dai A G2018.Dependence of estimated precipitation frequency and intensity on data resolution[J].Climate Dynamics50(9): 3625-3647.DOI: 10.1007/s00382-017-3830-7 .
null
Fu Y Ma Y Zhong L, et al, 2020.Land-surface processes and summer-cloud-precipitation characteristics in the Tibetan Plateau and their effects on downstream weather: a review and perspective[J].National Science Review7(3): 500-515.DOI: 10.1093/nsr/nwz226 .
null
Gao Y H Xu J W Chen D L2015.Evaluation of WRF mesoscale climate simulations over the Tibetan Plateau during 1979-2011[J].Journal of Climate28(7): 2823-2841.DOI: 10.1175/JCLI-D-14-00300.1 .
null
Gao Y Xiao L Chen D, et al, 2017.Quantification of the relative role of land-surface processes and large-scale forcing in dynamic downscaling over the Tibetan Plateau[J].Climate Dynamics, 48: 1705-1721.DOI: 10.1007/s00382-016-3168-6 .
null
Gu H H Yu Z B Peltier WR, et al, 2020.Sensitivity studies and comprehensive evaluation of RegCM4.6.1 high-resolution climate simulations over the Tibetan Plateau[J].Climate Dynamics54(7/8): 3781-801.DOI: 10.1007/s00382-020-05205-6 .
null
Hou A Y Kakar R K Neeck S, et al, 2014.The global precipitation measurement mission[J].Bulletin of the American Meteorological Society95(5): 701-722.DOI: 10.1175/BAMS-D-13-00164.1 .
null
Joyce R J Janowiak J E Arkin P A, et al, 2004.CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution[J].Journal of Hydrometeorology5(3): 487-503.DOI: 10. 1175/1525-7541(2004)0052.0.CO; 2 .
null
Karki R ul Hasson S Gerlitz L, et al, 2017.Quantifying the added value of convection-permitting climate simulations in complex terrain: a systematic evaluation of WRF over the Himalayas[J].Earth System Dynamics8(3): 507-28.DOI: 10.5194/esd-8-507-2017 .
null
Li J Yu R C Yuan W H, et al, 2015.Precipitation over East Asia simulated by NCAR CAM5 at different horizontal resolutions[J].Journal of Advances in Modeling Earth Systems7(2): 774-90.DOI: 10.1002/2014MS000414 .
null
Li P X Furtado K Zhou T J, et al, 2020.Convection‐permitting modelling improves simulated precipitation over the central and eastern Tibetan Plateau[J].Quarterly Journal of the Royal Meteorological Society147(734): 341-62.DOI: 10.1002/qj.3921 .
null
Li P X Furtado K Zhou T J, et al, 2020.The diurnal cycle of East Asian summer monsoon precipitation simulated by the Met Office Unified Model at convection-permitting scales[J].Climate Dynamics55(1): 131-151.
null
Lin C G Chen D L Yang K, et al, 2018.Impact of model resolution on simulating the water vapor transport through the central Himalayas: implication for models’ wet bias over the Tibetan Plateau[J].Climate Dynamics51(9/10): 3195-207.DOI: 10.1007/s00382-018-4074-x .
null
Liu Z Y Gao Y H Zhang G2022.How well can a convection-permitting-modelling improve the simulation of summer precipitation diurnal cycle over the Tibetan Plateau?[J] Climate Dynamics58(11/12): 3121-38.DOI: 10.1007/s00382-021-06090-3 .
null
Liu Z Ostrenga D Vollmer B, et al, 2017.Global precipitation measurement mission products and services at the NASA GES DISC[J].Bulletin of the American Meteorological Society98(3): 437-444.DOI: 10.1175/BAMS-D-16-0023.1 .
null
Ma M N Hui P H Liu D Q, et al, 2022.Convection-permitting regional climate simulations over Tibetan Plateau: re-initialization versus spectral nudging[J].Climate Dynamics58(5-6): 1719-35.
null
Ou T H Chen D L Chen X C, et al, 2020.Simulation of summer precipitation diurnal cycles over the Tibetan Plateau at the gray-zone grid spacing for cumulus parameterization[J].Climate Dynamics54(7): 3525-3539.DOI: 10.1007/s00382-020-05181-x .
null
Prein A F Gobiet A Suklitsch M, et al, 2013.Added value of convection permitting seasonal simulations[J].Climate Dynamics41(9): 2655-2677.DOI: 10.1007/s00382-013-1744-6 .
null
Rhoades A M Ullrich P A Zarzycki C M, et al, 2018.Sensitivity of mountain hydroclimate simulations in variable‐resolution CESM to microphysics and horizontal resolution[J].Journal of Advances in Modeling Earth Systems10(6): 1357-1380.DOI: 10. 1029/2018MS001326 .
null
Sato T Yoshikane T Satoh M, et al, 2008.Resolution dependency of the diurnal cycle of convective clouds over the Tibetan Plateau in a mesoscale model[J].Journal of the Meteorological Society of Japan, Ser.II.86: 17-31.
null
Suni T Guenther A Hansson H C, et al, 2015.The significance of land-atmosphere interactions in the Earth system—iLEAPS achievements and perspectives[J].Anthropocene, 12: 69-84.DOI: 10.1016/j.ancene.2015.12.001 .
null
Taylor K E2001.Summarizing multiple aspects of model performance in a single diagram[J].Journal of geophysical research: atmospheres106(D7): 7183-7192.
null
Wang X J Chen D L Pang G J, et al, 2021.Effects of cumulus parameterization and land-surface hydrology schemes on Tibetan Plateau climate simulation during the wet season: insights from the RegCM4 model[J].Climate Dynamics57(7/8): 1853-79.DOI: 10.1007/s00382-021-05781-1 .
null
Wang X J Pang G J Yang M X2018.Precipitation over the Tibetan Plateau during recent decades: a review based on observations and simulations[J].International Journal of Climatology38(3): 1116-1131.DOI: 10.1002/joc.5246 .
null
Wang Y Yang K Zhou X, et al, 2019.The Formation of a Dry‐Belt in the North Side of Central Himalaya Mountains[J].Geophysical Research Letters46(5): 2993-3000.DOI: 10.1029/2018GL081061 .
null
Wang Y Yang K Zhou X, et al, 2020.Synergy of orographic drag parameterization and high resolution greatly reduces biases of WRF-simulated precipitation in central Himalaya[J].Climate Dynamics54(3/4): 1729-40.DOI: 10.1007/s00382-019-05080-w .
null
Xie P P Joyce R Wu S R, et al, 2017.Reprocessed, bias-corrected CMORPH global high-resolution precipitation estimates from 1998[J].Journal of Hydrometeorology18(6): 1617-1641.DOI: 10.1175/JHM-D-16-0168.1 .
null
Xu J Zhang B Wang M, et al, 2012.Diurnal variation of summer precipitation over the Tibetan Plateau: a cloud-resolving simulation[C].Annales Geophysicae, 30(11): 1575-1586.DOI: 10.5194/angeo-30-1575-2012 .
null
Xu X D Lu C G Shi X H, et al, 2008.World water tower: An atmospheric perspective[J].Geophysical Research Letters35(20).DOI: 10.1029/2008GL035867 .
null
Yun Y X Liu C G Luo Y L, et al, 2019.Convection-permitting regional climate simulation of warm-season precipitation over Eastern China[J].Climate Dynamics54(3/4): 1469-89.DOI: 10.1007/s00382-020-05172-y .
null
Zhang Y Huang A Zhu X2006.Parameterization of the thermal impacts of sub-grid orography on numerical modeling of the surface energy budget over East Asia[J].Theoretical and Applied Climatology, 86: 201-214.DOI: 10.1007/s00704-005-0209-1? .
null
Zhao Y Zhou T J Li P X, et al, 2021.Added value of a convection permitting model in simulating atmospheric water cycle over the Asian Water Tower[J].Journal of Geophysical Research: Atmospheres126(13): e2021JD034788.
null
Zhou X Yang K Ou Y L, et al, 2021.Added value of kilometer-scale modeling over the third pole region: a CORDEX-CPTP pilot study[J].Climate Dynamics57(7/8): 1673-87.DOI: 10. 1007/s00382-021-05653-8 .
null
蔡俊飞, 赵伟, 杨梦娇, 等, 2022.基于GLASS数据的青藏高原2001-2018年蒸散发时空变化分析[J].遥感技术与应用37(4): 888-896.
null
陈桂琛, 黄志伟, 卢学峰, 等, 2002.青海高原湿地特征及其保护[J].冰川冻土24(3): 254-259.
null
陈炜, 姜大膀, 王晓欣, 2021.CMIP6模式对青藏高原气候的模拟能力评估与预估研究[J].高原气象40(6): 1455-1469.DOI: 10.7522/j.issn.1000-0534.2021.zk003 .
null
高艳红, 刘伟, 曾礼, 2021.陆面过程高分辨率模拟的不确定性[J].高原气象40(6): 1364-1376.DOI: 10.7522/j.issn.1000-0534.2021.zk008 .
null
胡芩, 姜大膀, 范广洲, 2014.CMIP5全球气候模式对青藏高原地区气候模拟能力评估[J].大气科学38(5): 924-938.DOI: 10.3878/j.issn.1006-9895.2013.13197 .
null
黄安宁, 张耀存, 朱坚, 2009.中国夏季不同强度降水模拟对不同积云对流参数化方案的敏感性研究[J].大气科学33(6): 1212-1224.DOI: 10.3878/j.issn.1006-9895.2009.06.08 .
null
计晓龙, 吴昊旻, 黄安宁, 等, 2017.青藏高原夏季降水日变化特征分析[J].高原气象36(5): 1188-1200.DOI: 10.7522/j.issn. 1000-0534.2016.00119 .
null
陆云, 郭子悦, 汤剑平, 2021.对流允许尺度区域气候模拟的研究进展[J].气象科学41(6): 818-827.
null
孟宪红, 陈昊, 李照国, 2020.三江源区气候变化及其环境影响研究综述[J].高原气象39(6): 1133-1143.DOI: 10.7522/j.issn.1000-0534.2019.00144 .
null
施雅风, 刘时银, 2000.中国冰川对21世纪全球变暖响应的预估[J].科学通报45(4): 434-438.DOI: 10.1360/csb2000-45-4-434 .
null
屠妮妮, 何光碧, 张利红, 2011.WRF模式中不同积云对流参数化方案对比试验[J].高原山地气象研究31(2): 18-25.DOI: 10.3969/j.issn.1674-2184.2011.02.003 .
null
王瑞, 乔枫雪, 丁杨, 等, 2021.不同嵌套方式下的积云对流方案对上海崇明极端暴雨高分辨率模拟的影响研究[J].气候与环境研究26(1): 58-74.
null
吴胜刚, 刘屹岷, 邹晓蕾, 等, 2016.WRF模式对青藏高原南坡夏季降水的模拟分析[J].气象学报74(5): 744-756.DOI: 10. 11676/qxxb2016.048 .
null
杨扬, 卢冰, 王薇, 等, 2021.基于WRF的积云对流参数化方案对中国夏季降水预报的影响研究[J].气象学报79(4): 612-625.DOI: 10.11676/qxxb2021.045 .
null
杨耀先, 胡泽勇, 路富全, 等, 2022.青藏高原近60年来气候变化及其环境影响研究进展[J].高原气象41(1): 1-10.DOI: 10.7522/j.issn.1000-0534.2021.00117 .
null
姚檀栋, 朱立平, 2006.青藏高原环境变化对全球变化的响应及其适应对策[J].地球科学进展21(5): 459-464.DOI: 10. 3321/j.issn: 1001-8166.2006.05.003 .
null
张冬峰, 高学杰, 白虎志, 等, 2005.RegCM3模式对青藏高原地区气候的模拟[J].高原气象24(5): 714-720.
null
张戈丽, 欧阳华, 张宪洲, 等, 2010.基于生态地理分区的青藏高原植被覆被变化及其对气候变化的响应[J].地理研究29(11): 2004-2016.
null
张宏文, 高艳红, 2020.基于动力降尺度方法预估的青藏高原降水变化[J].高原气象39(3): 477-485.DOI: 10.7522/j.issn. 1000-0534.2019.00125 .
null
郑度, 姚檀栋, 2006.青藏高原隆升及其环境效应[J].地球科学进展21(5): 451-458.DOI: 10.3321/j.issn: 1001-8166. 2006. 05.002 .
null
钟水新, 2020.地形对降水的影响机理及预报方法研究进展[J].高原气象39(5): 1122-1132.DOI: 10.7522/j.issn.1000-0534. 2019.00083 .
null
周心河, 熊喆, 2019.区域气候模式不同积云对流参数化方案对新疆气候模拟的影响研究[J].气候与环境研究24(2): 169-185.
文章导航

/