论文

葵花8号辐射率资料同化在一次川渝暴雨预报中的应用研究

  • 梁皓 ,
  • 许冬梅 ,
  • 束艾青 ,
  • 张雪薇 ,
  • 宋丽欣
展开
  • 1. 南京信息工程大学气象灾害教育部重点实验室/气候与环境变化国际合作联合实验室/ 气象灾害预报预警与评估协同创新中心,江苏 南京 210044
    2. 中国科学院空天信息创新研究院遥感科学国家重点实验室,北京 100101
    3. 承德市气象局,河北 承德 067000
    4. 中国气象局雷达气象重点开放实验室,江苏 南京 210000

梁皓(2001 -), 男, 河北秦皇岛人, 助理工程师, 研究方向为数值模拟和卫星资料同化. E-mail:

收稿日期: 2022-07-20

  修回日期: 2022-12-27

  网络出版日期: 2023-11-14

基金资助

国家自然科学基金重大项目(42192553); 国家自然科学基金项目(U2242212); 遥感科学国家重点实验室开放基金项目(OFSLRSS202321); 中国气象局雷达气象重点开放实验室基金项目(2023LRM-B03); 上海市优秀学术/技术带头人计划(21XD1404500); 上海台风基金项目(TFJJ202107); 高原与盆地暴雨旱涝灾害四川省重点实验室开放研究基金项目(SZKT201904); 南京信息工程大学大学生创新创业训练计划项目(202210300006Z)

The Impact of Assimilating Himawari-8 Radiance Data on the Prediction of a Severe Storm over Sichuan-Chongqing Region

  • Hao LIANG ,
  • Dongmei XU ,
  • Aiqing SHU ,
  • Xuewei ZHANG ,
  • Lixin SONG
Expand
  • 1. Key Laboratory of Meteorological Disaster,Ministry of Education /Joint International Research Laboratory of Climate and Environment Change/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters,Nanjing University of Information Science & Technology,Nanjing 210044,Jiangsu,China
    2. State Key Laboratory of Remote Sensing Science,Aerospace Information Research Institute,Chinese Academy of Sciences,Beijing 100101,China
    3. Chengde Meteorological Bureau,Chengde 067000,Heibei,China
    4. China Meteorological Administration Radar Meteorology Key Laboratory,Nanjing 210000,Jiangsu,China

Received date: 2022-07-20

  Revised date: 2022-12-27

  Online published: 2023-11-14

摘要

新一代静止气象卫星葵花8号 (Himawari-8) 上搭载的静止轨道成像仪AHI (Advanced Himawari Imager) 凭借其高时空分辨率可以对重庆地区暴雨进行连续观测。本文选取2019年4月19日的一次区域性暴雨天气过程为试验个例, 采用WRF (Weather Research and Forecasting) 中尺度模式进行数值模拟。基于WRFDA (Weather Research and Forecasting model Data Assimilation) 同化系统对葵花8号静止气象卫星的AHI辐射率资料进行相应的质量控制和云检测, 进而开展循环同化试验, 考察卫星资料同化对这次强对流天气过程预报结果的改进。结果表明在同化AHI红外辐射率资料之后, 辐射传输模式模拟的亮温和观测亮温更为接近。此外, AHI水汽通道辐射率资料同化有效提高了对各层高度上的风场、 水汽场、 雷达回波等要素特征的分析效果, 并且使模式的初始条件更逼近真实的大气状态。研究发现同化AHI水汽通道辐射率资料后模拟的降水整体分布与实际情况更为接近, 主要雨带位置以及强降水中心的精确程度显著高于背景场的预报效果。经过卫星同化的试验可以预报出控制试验漏报的强降水中心, 并且有效地削弱了四川东部和甘肃东南部的虚假强降水范围以及强降水中心。本研究可以为川渝地区暴雨天气数值预报系统中的静止红外辐射率资料的预处理和同化应用提供有益的参考。

本文引用格式

梁皓 , 许冬梅 , 束艾青 , 张雪薇 , 宋丽欣 . 葵花8号辐射率资料同化在一次川渝暴雨预报中的应用研究[J]. 高原气象, 2023 , 42(6) : 1478 -1491 . DOI: 10.7522/j.issn.1000-0534.2022.00112

Abstract

Himawari-8 is a new generation of stationary orbit imager, AHI (Advanced Himawari Imager) onboard is able to is able to provide observations with high spatial and temporal resolution to detect weather systems continuously over Sichuan - Chongqing Region.In this study, a numerical simulation is conducted for a severe regional storm event over Sichuan-Chongqing region on April 19, 2019 based on the weather Research and Forecasting (WRF) model.Furtherly, several radiance data assimilation experiments were performed for the storm with the WRF data assimilation (WRFDA) system from Himawari-8 AHI water vapor channels.Infrared radiance quality control and cloud detection procedures are conducted firstly.Cycling data assimilation schemes are further designed to investigate the impact of assimilating AHI radiance on the analyses and prediction of the weather system.The results show that the simulated brightness temperature of AHI water channels based on the radiative transfer model of CRTM in the analysis is more consistent with the observed brightness temperature than the those simulated from the background.It is also found that that assimilation of Himawari-8 AHI water vapor channels contributes to better describing the model initial conditions including the wind field, the water vapor field, and the radar reflectivity on multiple levels.Compared to the control experiment without any data assimilation, the forecast skill is enhanced in terms of predicting the main patterns of the precipitation after assimilating the AHI water vapor radiance data.To be specific, the assimilation experiment could capture the position of the main rainband and the center of heavy precipitation better.Through the AHI water vapor data assimilation, the heavy precipitation centers that are missed in the control experiment are successfully predicted.In addition, AHI radiance data assimilation experiment effectively improves the overestimated heavy precipitation from the control experiment in eastern Sichuan and southeastern Gansu for both the range and intensity.This study aims to provide the useful reference for the pretreatment and assimilation of geostationary infrared radiance data in the rainstorm system in numerical models over Sichuan-Chongqing Region.

参考文献

null
Bauer P Ohring G Kummerow C, et al, 2011.Assimilating satellite observations of clouds and precipitation into NWP models[J].Bulletin of the American Meteorological Society, 92(6): ES25-ES28.DOI: 10.1175/2011BAMS3182.1 .
null
Goldberg M D Qu Y Mcmillin L M, et al, 2003.AIRS near-real-time products and algorithms in support of operational numerical weather prediction[J].IEEE Transactions on Geoscience and Remote Sensing41(2): 379-389.DOI: 10.1109/TGRS.2002. 808307 .
null
Honda T Miyoshi T Lien G Y, et al, 2018.Assimilating all-sky Himawari-8 satellite infrared radiances: a case of typhoon soudelor (2015)[J].Monthly Weather Review146(1): 213-229.DOI: 10.1175/MWR-D-16-0357.1 .
null
Ma Z Z Eric S M Zhang B L, et al, 2017.Impact assessment of Himawari-8 AHI data assimilation in NCEP GDAS/GFS with GSI[J].Journal of Atmospheric and Oceanic Technology34(4): 797-815.DOI: 10.1175/JTECH-D-16-0136.1 .
null
Masahiro K2018.Assimilation of Himawari-8 Clear Sky Radiance Data in JMA's global and mesoscale NWP systems[J].Journal of the Meteorological Society of Japan, 96B: 173-192.DOI: 10.2151/jmsj.2018-037 .
null
Minamide M Zhang F Q2018.Assimilation of All-Sky infrared radiances from Himawari-8 and impacts of moisture and hydrometer initialization on convection-permitting tropical cyclone prediction[J].Monthly Weather Review146(10): 3241-3258.DOI: 10. 1175/MWR-D-17-0367.1 .
null
Otkin J A2012. Assimilation of water vapor sensitive infrared brightness temperature observations during a high impact weather event[J].Journal of Geophysical Research: Atmospheres140(D19): D19203.DOI: 10.1029/2012JD017568 .
null
Wang Y B Liu Z Q Yang S, et al, 2018.Added value of assimilating Himawari-8 AHI water vapor radiances on analyses and forecasts for “7·19” severe storm over north China[J].Journal of Geophysical Research Atmospheres123(624): 3374-3394.DOI: 10.1002/2017JD027697 .
null
Wu Y L Liu Z Q Li D Q2020.Improving forecasts of a record-breaking rainstorm in Guangzhou by assimilating every 10-min AHI radiances with WRF 4DVAR[J].Atmospheric Research239(623): 104912.DOI: 10.1016/j.atmosres.2020.104912 .
null
Xu D M Liu Z Q Fan S Y, et al, 2021.Assimilating All-sky infrared radiances from Himawari-8 using the 3DVar method for the prediction of a severe storm over North China[J].Advances in Atmospheric Sciences38(4): 661-676.DOI: 10.1007/s00376-020-0219-z .
null
Zhuge X Zou X2016.Test of a modified infrared-only ABI cloud mask algorithm for AHI radiance observations[J].Journal of Applied Meteorology and Climatology55(11): 2529-2546.DOI: 10.1175/JAMC-D-16-0254.1 .
null
耿晓雯, 闵锦忠, 杨春, 等, 2020.FY-4A AGRI辐射率资料偏差特征分析及订正试验[J].大气科学44(4): 679-694.DOI: 10. 3878/j.issn.1006-9895.1907.18254 .
null
官莉, 王振会, 2007.用空间匹配的MODIS云产品客观确定AIRS云检测[J].气象科学27(5): 516-521.DOI: 10.3969/j.issn. 1009-0827.2007.05.007 .
null
官莉, 2005.卫星红外超光谱资料及其在云检测、 晴空订正和大气廓线反演方面的应用[D].南京: 南京信息工程大学.
null
黄嘉丽, 秦年秀, 2020.近50年来我国西南地区暴雨变化特征分析[J].低碳世界10(12): 229-230.DOI: 10.16844/j.cnki.cn10-1007/tk.2020.12.111 .
null
蒋璐西, 陈科艺, 陈林琳, 2019.MWHS/FY-3资料同化在四川盆地暴雨预报中的应用研究[J].高原山地气象研究39(4): 9-15.DOI: 10.3969/j.issn.1674-2184 ·2019.04.002.
null
毛璐, 谢彦辉, 刘瑞霞, 等, 2022.FY-3C微波湿度计辐射率资料同化对RMAPS-ST系统的降水预报影响[J].高原气象41(4): 896-908.DOI: 10.7522/j.issn.1000-0534.2021.00025 .
null
束艾青, 许冬梅, 李泓, 等, 2022.FY-3D卫星MWHS-2辐射率资料直接同化对台风“米娜”预报的影响[J].热带海洋学报41(5): 17-28.DOI: 10.11978/2021160 .
null
覃丹宇, 方宗义, 2014.利用静止气象卫星监测初生对流的研究进展[J].气象40(1): 7-17.DOI: 10.7519/j.issn.1000-0526. 2014.01.002 .
null
王元兵, 陈耀登, 2018.葵花8号辐射率资料在对流尺度数值预报中的同化研究[C]//.第35届中国气象学会年会S9卫星资料同化. 64.
null
许冬梅, 沈菲菲, 李泓, 等, 2022.新一代静止气象卫星葵花8号的晴空红外辐射率资料同化对台风“天鸽”的预报影响研究[J].海洋学报44(3): 40-52.DOI: 10.12284/hyxb2022087 .
null
杨春, 闵锦忠, 刘志权, 2017.AMSR2辐射率资料同化对台风“山神”分析和预报的影响研究[J].大气科学41(2): 372-384.DOI: 10.3878/j.issn.1006-9895.1608.16127 .
null
张冰, 郑媛媛, 沈菲菲, 等, 2021.2017年苏南一次特大暴雨高分辨率模拟及特征分析[J].气象科学41(3): 386-397.DOI: 10. 12306 /2020jms.0051 .
null
张家国, 王珏, 周金莲, 等, 2008.暴雨多普勒天气雷达回波特征分析及临近预警[J].暴雨灾害27(4): 326-329.DOI: 10.3969/j.issn.1004-9045.2008.04.007 .
null
张涛, 姜立鹏, 师春香, 等, 2019.AMSU-A全空辐射率资料同化对台风“天鸽”的预报影响研究[J].大气科学学报42(5): 705-714.DOI: 10.13878/j.cnki.dqkxxb.20180731001 .
null
周玉淑, 颜玲, 吴天贻, 等, 2019.高原涡和西南涡影响的两次四川暴雨过程的对比分析[J].大气科学43(4): 813-830.DOI: 10.3878/j.issn.1006-9895.1807.18147 .
null
朱文刚, 2012.高光谱大气红外探测器AIRS资料云检测及晴空通道应用技术初步研究[D].南京: 南京信息工程大学.
文章导航

/