论文

南疆东风急流暴雨与非东风急流暴雨的观测特征及天气系统差异

  • 杨霞 ,
  • 周鸿奎
展开
  • 1. 新疆维吾尔自治区气象台,新疆 乌鲁木齐 830002
    2. 新疆维吾尔自治区气象信息中心,新疆 乌鲁木齐 830002

杨霞(1980 -)女, 甘肃武威人, 正研级高级工程师, 主要从事灾害性天气机理和预报技术研究. E-mail:

收稿日期: 2021-07-07

  修回日期: 2023-01-17

  网络出版日期: 2023-11-14

基金资助

国家自然科学基金地区基金项目(42065001); 新疆维吾尔自治区重点研发任务专项(2022B03027)

Analysis of the Difference between Rainstorm Accompanied by Easterly Low-level Jet in Tarim and Rainstorm without Easterly Low-level Jet in Tarim in Southern Xinjiang

  • Xia YANG ,
  • Hongkui ZHOU
Expand
  • 1. Xinjiang Uygur Autonomous Region Meteorological Service,Urumqi 830002,Xinjiang,China
    2. Xinjiang Meteorological Information Center,Urumqi 830002,Xinjiang,China

Received date: 2021-07-07

  Revised date: 2023-01-17

  Online published: 2023-11-14

摘要

中国季风区的区域性暴雨过程大多与低空急流有关, 然而在干旱、 半干旱地区, 每一次暴雨过程却不一定都有低空急流配合。根据南疆44个国家气象站1971 -2020年5 -9月逐日降水资料和2011 - 2020年逐小时降水资料, 以及若羌站每日2 次的探空资料, 利用统计方法, 分析了近50 a南疆东风急流暴雨与非东风急流暴雨的观测特征差异, 以及造成二者的天气系统差异。结果表明: 近50 a南疆东风急流暴雨日数略少于非东风急流暴雨日数, 二者均呈增加趋势, 但东风急流暴雨日数的增加趋势更显著; 东风急流暴雨日数占南疆总暴雨日数的比例呈增加趋势, 非东风急流暴雨日数占比呈下降趋势。南疆暖季东风急流暴雨日数在5月最多, 非东风急流暴雨日数在7月最多, 二者均在9月最少。20世纪70~90年代, 南疆暖季以非东风急流暴雨为主, 自21世纪起, 以东风急流暴雨为主。南疆西(东)部地区的暴雨日数相对较多(少), 且以东风(非东风)急流暴雨为主。短时强降水事件在南疆暖季非东风急流暴雨中出现的比例明显高于东风急流暴雨; 约80%(60%)的东风(非东风)急流暴雨日的平均降水时数大于(小于)6 h, 东风(非东风)急流暴雨以夜(日)雨为主。南疆暖季东风急流暴雨的最大降水时段和最多发生时段都主要在午夜前后; 而非低空急流暴雨的最大降水时段则多发生在午后至傍晚, 其最大累积频次与急流暴雨类似也出现在午夜前后; 两类暴雨的最大雨强都发生在午后至傍晚。南疆暖季东风急流暴雨降水量在前半夜的峰值主要由降水频次多所导致, 而其在傍晚前后降水量的次峰值则主要由降水强度大造成。南疆暖季非东风急流暴雨降水量的日变化特征与其降水强度类似, 与其降水频次的差异较大, 其降水量与降水强度的关系更密切。100 hPa南亚高压在南疆暖季东风急流暴雨和非东风急流暴雨中的差异较大, 500 hPa上中亚低槽(涡)在二者中均占主要地位。目前, 针对有塔里木东风低空急流配合的南疆暴雨的形成机制研究相对成熟, 而对无塔里木东风低空急流配合的暴雨过程的形成机制还不清晰。

本文引用格式

杨霞 , 周鸿奎 . 南疆东风急流暴雨与非东风急流暴雨的观测特征及天气系统差异[J]. 高原气象, 2023 , 42(6) : 1492 -1503 . DOI: 10.7522/j.issn.1000-0534.2023.00003

Abstract

Most of the regional heavy rain processes in the monsoon region of China are related to the low-level jet.However, in arid and semi-arid regions, the low-level jet stream is not necessarily associated with every rainstorm process.Based on the daily precipitation data from May to September from 1971 to 2020, hourly precipitation data from 2011 to 2020, and the radiosonde data from Ruoqiang Station twice a day, the observational characteristics of heavy rain with and without easterly low-level jet in southern Xinjiang in recent 40 years were analyzed by statistical methods.The results show that the number of rainstorm days accompanied by easterly low-level jet is slightly less than that without easterly low-level jet in southern Xinjiang in recent 40 years.Both of them showed an increasing trend in the past 40 years, but the increasing trend of the number of rainstorm days accompanied by the easterly low-level jet was more significant.In the past 40 years, the proportion of rainstorm days accompanied by easterly low-level jet to the total rainstorm days in southern Xinjiang showed an increasing trend, while the proportion of rainstorm days without easterly low-level jet showed a decreasing trend.In the warm season of southern Xinjiang, the number of rainstorm days accompanied by easterly low-level jet was the highest in May, while the number of rainstorm days without easterly low-level jet was the highest in July, and both of them were the least in September.From the 1970s to the 1990s, the heavy rain in the warm season in southern Xinjiang was mainly accompanied by the easterly low-level jet, and from the 2000s to the present, the heavy rain was mainly accompanied by the easterly low-level jet.The number of rainstorm days is relatively higher in the western part of southern Xinjiang, and the rainstorm is mainly accompanied by easterly low level jet stream.The proportion of short-time heavy precipitation events in the rainstorm without the easterly low-level jet in the warm season in southern Xinjiang is significantly higher than that in the rainstorm with the easterly low-level jet.The rainstorm accompanied by the easterly low-level jet is dominated by night rain, while the rainstorm without the easterly low-level jet is dominated by day rain.In the warm season of southern Xinjiang, the periods of maximum precipitation and maximum occurrence of the rainstorm with the easterly low-level jet mainly occurred around midnight, while the periods of maximum precipitation of the rainstorm without the easterly low-level jet mainly occurred from late afternoon to late afternoon.The maximum cumulative frequency of the rainstorm without the easterly low-level jet is similar to that of the rainstorm with the easterly low-level jet occurred around midnight.The maximum intensity of both types of torrential rain occurs from mid-afternoon to late afternoon.The peak value of rainstorm precipitation with easterly low-level jet in the warm season in southern Xinjiang was mainly caused by the frequency of precipitation in the early night, while the sub-peak value of rainstorm precipitation around evening was mainly caused by the intensity of precipitation.The diurnal variation characteristics of rainstorm precipitation without easterly low-level jet in the warm season in southern Xinjiang are similar to its precipitation intensity, and the difference between it and its precipitation frequency is great.There is a great difference between the rainstorm with easterly low level jet and the rainstorm without easterly low level jet in the warm season of southern Xinjiang.At present, the research on the formation mechanism of rainstorm in southern Xinjiang with the coordination of easterly low level jet from Tarim is relatively mature, while the formation mechanism of rainstorm without the coordination of easterly low level jet from Tarim is still unclear.

参考文献

null
Bao X H Zhang F Q Sun J H2011.Diurnal variations of warm-season precipitation east of the Tibetan Plateau over China[J].Monthly Weather Review, (139): 2790-2810.
null
Chen X Zhao K Xue M, et al, 2015.Radar-observed diurnal cycle and propagation of convection over the Pearl River Delta during Mer-Yu season[J].Journal of Geoghysical Research: Atmospheres120(24): 12557-75.
null
Yu R C Zhou T J Xiong A Y, et al, 2007.Diurnal variations of summer precipitation over contiguous China[J].Geophysical Research Letters34(1): L01704.DOI: 10.1029/2006GL028129 .
null
陈豫英, 苏洋, 杨银, 等, 2021.贺兰山东麓极端暴雨的中尺度特征[J].高原气象40(1): 47-60.DOI: 10.7522/j.issn.1000-0534.2020.00012 .
null
崔彩霞, 李扬, 杨青, 2008.新疆夜雨和昼雨的空间分布和长期变化[J].中国沙漠28(5): 903-907.
null
邓承之, 赵宇, 孔凡铀, 等, 2021.“6·30”川渝特大暴雨过程中西南低涡发展机制模拟分析[J].高原气象40(1): 85-97.DOI: 10.7522/j.issn.1000-0534.2019.00106 .
null
邓子风, 王扣兰, 王政宇, 1982.塔里木东风低空急流与南疆降水[J].气象8(2): 7-10.
null
邓子风, 1990.干旱半干旱地区低空急流特征与暴雨关系的研究[J].新疆气象13(12): 1-8.
null
丁一汇, 1994.暴雨和中尺度气象学问题[J].气象学报52(3): 274-284.
null
窦新英, 李如琦, 安大维, 2018.南疆夏季不同降水类型预报及递进式服务思考[J].沙漠与绿洲气象12(4): 1-6.
null
韩萍, 薛燕, 苏宏超, 2003.新疆降水在气候转型中的信号反映[J].冰川冻土25(2): 179-182.
null
韩子霏, 隆霄, 王思懿, 等, 2021.不同初始场对一次西北地区暴雨影响的数值模拟研究[J].高原气象40(2): 333-342.DOI: 10.7522/j.issn.1000-0534.2020.00017 .
null
何华, 孙绩华, 2004.高低空急流在云南大范围暴雨过程中的作用及共同特征[J].高原气象23(5): 629-634.
null
刘海涛, 刘海红, 张云惠, 等, 2013.南疆西部沙漠边缘汛期两次罕见暴雨过程诊断分析[J].干旱区资源与环境27(8): 90-96.
null
刘华悦, 葛觐铭, 黄建平, 2015.塔克拉玛干低空急流特征分析[J].干旱气象33(3): 405-411.
null
马淑红, 席元伟, 1997.新疆暴雨的若干规律性[J].气象学报55(2): 239-248.
null
苗爱梅, 武捷, 赵海英, 等, 2010.低空急流与山西大暴雨的统计关系及流型配置[J].高原气象29(4): 939-946.
null
钱永甫, 张琼, 2002.南亚高压与我国盛夏气候异常[J].南京大学学报: 自然科学版38(3): 295-307.
null
钱正安, 蔡英, 宋敏红, 等, 2018.中国西北旱区暴雨水汽输送研究进展[J].高原气象37(3): 577-590.DOI: 10.7522/j.issn. 1000-0534.2018.00032 .
null
施雅风, 沈永平, 胡汝骥, 2002.西北气候由暖干向暖湿转型的信号、 影响和前景初步探讨[J].冰川冻土24(3): 219-226.
null
施雅风, 沈永平, 李栋梁, 等, 2003.中国西北气候由暖干向暖湿转型的特征和趋势探讨[J].第四纪研究23(2): 152-164.
null
孙淑清, 马廷标, 孙纪改, 1979.低空急流与暴雨相互关系的对比分析[J].气象学报37(4): 36-44.
null
孙颖姝, 周玉淑, 王咏青, 2019.一次双高空急流背景下南疆强降水事件的动力过程和水汽源分析[J].大气科学43(5): 1041-1054.
null
陶诗言, 等, 1980.中国之暴雨[M].北京: 科学出版社, 255.
null
陶诗言, 丁一汇, 周晓平, 1979.暴雨和强对流天气的研究[J].大气科学3(3): 227-238.
null
王华, 李宏宇, 仲跻芹, 等, 2019.京津冀一次罕见的双雨带暴雨过程成因分析[J].高原气象38(4): 856-871.DOI: 10.7522/j.issn.1000-0534.2018.00102 .
null
王前, 赵勇, 陈飞, 等, 2017.南亚高压的多模态特征及其与新疆夏季降水的联系[J].高原气象36(5): 1209-1220.DOI: 10. 7522/j.issn.1000-0534.2016.00123 .
null
王天竺, 赵勇, 2021.青藏高原和热带印度洋5月热力异常与新疆夏季降水的关系[J].高原气象40(1): 1-14.DOI: 10.7522/j.issn.1000-0534.2020.00003 .
null
谢泽明, 周玉淑, 杨莲梅, 2018.新疆降水研究进展综述[J].暴雨灾害37(3): 204-212.
null
杨莲梅, 2003.新疆极端降水的气候变化[J].地理学报58(4): 577-583.
null
杨霞, 张云惠, 张超, 等, 2020a.南疆西部“5·21”极端大暴雨成因分析[J].沙漠与绿洲气象14(1): 21-30.
null
杨霞, 周鸿奎, 许婷婷, 等, 2021.南疆夏季不同类型暴雨的精细化特征对比分析[J].干旱区研究38(3): 747-756.
null
杨霞, 周鸿奎, 赵克明, 等, 2020b.1991-2018年新疆夏季小时极端强降水特征[J].高原气象39(4): 762-773.DOI: 10.7522/j.issn.1000-0534.2019.00114 .
null
宇如聪, 李建, 陈昊明, 等, 2014.中国大陆降水日变化研究进展[J].气象学报72(5): 948-968.
null
张丙午, 1979.暖湿东风过程及其与新疆暴雨的关系[J].新疆气象3(2): 1-6.
null
张芳丽, 李国平, 罗潇, 2020.四川盆地东北部一次突发性暴雨事件的影响系统分析[J].高原气象39(2): 321-332.DOI: 10. 7522/j.issn.1000-0534.2019.00080 .
null
张家宝, 邓子风, 1987.新疆降水概论[M].北京: 气象出版社, 276-280.
null
张家宝, 苏启元, 孙沈清, 等, 1986.新疆短期天气预报指导手册[M].乌鲁木齐: 新疆人民出版社, 456.
null
张俊兰, 李娜, 秦贺, 等, 2016.新疆一次暴雨过程的观测分析及水汽特征[J].暴雨灾害35(6): 537-545.
null
张云惠, 陈春艳, 杨莲梅, 等, 2013.南疆西部一次罕见暴雨过程的成因分析[J].高原气象32(1): 191-200.DOI: 10.7522/j.issn.1000-0534.2012.00019 .
null
张云惠, 李海燕, 蔺喜禄, 等, 2015.南疆西部持续性暴雨环流背景及天气尺度的动力过程分析[J].气象41(7): 816-824.
null
庄晓翠, 李博渊, 秦榕, 等, 2020.新疆东部一次区域极端暴雨环境场特征[J].高原气象39(5): 947-959.DOI: 10.7522/j.issn. 1000-0534.2019.00081 .
文章导航

/