收稿日期: 2022-07-31
修回日期: 2023-01-05
网络出版日期: 2023-11-14
基金资助
国家自然科学基金项目(42175174); 中国科学院战略性先导科技专项(XDA20050102); 成都信息工程大学教师科技创新能力提升计划项目(KYQN202239)
Comparative Analysis of Individual Water Vapor Sources in Dry and Wet Year in Southwest China
Received date: 2022-07-31
Revised date: 2023-01-05
Online published: 2023-11-14
中国西南地区常年气候湿润, 但近年来该地频繁发生的干旱灾害造成了诸如农作物减产、 森林火灾等巨大经济损失。为了深入探索西南地区干旱年份水汽输送的异常, 并为今后西南地区干旱灾害的预警提供参考, 本文利用TRMM和APHRODITE两种降水数据, 分析了1998 -2019年西南地区降水的年际变化及各季节降水量的年际变化, 选出夏季干旱年(2011年)和秋季干旱年(2009年)以及夏季秋季都较为湿润的2008年, 通过拉格朗日输送模型FLEXPART追踪了两个极端干旱季节(2009年秋季和2011年夏季)的水汽输送路径及水汽源地, 并分别与湿润年份(2008年)的夏季和秋季做了对比分析。结果表明: (1)干湿年份的水汽输送路径一致, 夏季西南地区的水汽输送路径主要可分为3条: 西南路径、 东南路径和西北路径, 其中最主要的是西南路径, 故主要的水汽源地为阿拉伯海-孟加拉湾一带; 秋季西南地区的水汽输送的主要路径可分为两条: 东南路径和西北路径, 其中最主要的是东南路径, 故主要的水汽源地为我国南海-太平洋西北部一带。(2)干湿年份水汽输送强弱存在差异, 夏季西南地区干旱的原因是西南路径对水汽的输送较弱, 而秋季西南地区干旱的原因则是东南路径对水汽的输送较弱引起的。
朱家宁 , 杨显玉 , 吕雅琼 , 文军 , 陈颖 . 中国西南地区干湿年份水汽来源个例对比分析[J]. 高原气象, 2023 , 42(6) : 1504 -1517 . DOI: 10.7522/j.issn.1000-0534.2023.00001
The climate of Southwest China is wet all year round, but the frequent drought disasters in recent years have caused huge economic losses such as crop yield reduction and forest fire.In order to fully understand the anomalies of water vapor transport in drought years in Southwest China and provide reference for early warning of drought disasters in this area in the future, this study used TRMM and APHRODITE precipitation data to analyze the interannual variation of precipitation and the interannual variation of precipitation in various seasons in Southwest China from 1998 to 2019, selected the summer dry year (2011), autumn dry year (2009) and 2008, which were relatively wet in summer and autumn.Using Lagrangian transport model FLEXPART, we tracked the paths of water vapor transport and water vapor sources in the two extreme dry seasons (the autumn of 2009 and the summer of 2011), and compared with the summer and autumn of the wet year (2008), respectively.The results showed that: (1) The paths of water vapor transport in dry and wet year are consistent, and the paths in southwest China in summer can be divided into three main paths: the southwest path, the southeast path and the northwest path, among which the most dominant is the southwest path, so the main water vapor source area are the Arabian Sea——the Bay of Bengal.In autumn, the main paths can be divided into two: the southeast path and the northwest path, of which the most important is the southeast path, so the main source of water vapor is South China Sea——the Pacific Northwest.(2) There are differences in the strength of water vapor transport between dry and wet years.The reason for the drought in Southwest China in summer is that the water vapor transported by the southwest route is weak, while the reason for the drought in Southwest China in autumn is that the water vapor transported by southeast route is weak.
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | 陈斌, 徐祥德, 卞建春, 等, 2010.夏季亚洲季风区对流层向平流层输送的源区、 路径及其时间尺度的模拟研究[J].大气科学, 34(3): 495-505.DOI: 1006-9895(2010)03-0495-11 . |
null | 陈斌, 徐祥德, 施晓晖, 2011.拉格朗日方法诊断2007年7月中国东部系列极端降水的水汽输送路径及其可能蒸发源区[J].气象学报, 69(5): 810-818.DOI: 10.11676/qxxb2011.071 . |
null | 陈斌, 徐祥德, 杨帅, 等, 2012.夏季青藏高原地区近地层水汽进入平流层的特征分析[J].地球物理学报, 55(2): 406-414.DOI: 10.6038/j.issn.0001-5733.2012.02.005 . |
null | 陈子凡, 王磊, 李谢辉, 等, 2022.西南地区极端降水时空变化特征及其与强ENSO事件的关系[J].高原气象, 41(3): 604-616.DOI: 10.7522/j.issn.1000-0534.2022.00004 . |
null | 黄荣辉, 刘永, 王林, 等, 2012.2009年秋至2010年春我国西南地区严重干旱的成因分析[J].大气科学, 36(3): 443-457.DOI: 10.3878/j.issn.1006-9895.2011.11111 . |
null | 李毅, 王举, 黄泓, 2012.西南地区近三年冬季水汽输送异常的研究[C]//江苏镇江: 第九届长三角气象科技论坛论文集.2012: 8-8. |
null | 李忆平, 王劲松, 李耀辉, 2015.2009/2010年中国西南区域性大旱的特征分析[J].干旱气象, 33(4): 537-545.DOI: 10.11755/j.issn.1006-7639(2015)-04-0537 . |
null | 李永华, 徐海明, 刘德, 2009.2006年夏季西南地区东部特大干旱及其大气环流异常[J].气象学报, 67(1): 122-132.DOI: 10. 3321/j.issn: 0577-6619.2009.01.013 . |
null | |
null | 刘德, 李永华, 高阳华, 等, 2005.重庆夏季旱涝的欧亚环流特征分析[J].高原气象, 24(2): 275-279. |
null | 刘煜, 刘蓉, 王欣, 等, 2022a.黄河源区干湿演变条件下的水汽输送特征研究[J].高原气象, 41(1): 47-57.DOI: 10.7522/j.issn.1000-0534.2020.00057 . |
null | 刘煜, 刘蓉, 王欣, 等, 2022b.基于拉格朗日方法评估青藏高原若尔盖地区水汽输送特征[J].高原气象, 41(1): 58-67.DOI: 10.7522/j.issn.1000-0534.2021.00100 . |
null | |
null | 彭京备, 张庆云, 布和朝鲁, 2007.2006年川渝地区高温干旱特征及其成因分析[J].气候与环境研究, 12(3): 464-474.DOI: 10.3969/j.issn.1006-9585.2007.03.026 . |
null | 权晨, 陈斌, 赵天良, 等, 2016.拉格朗日水汽源诊断方法在三江源区的应用[J].应用气象学报, 27(6): 688-697.DOI: 10. 11898/1001-7313.20160605 . |
null | 钱正安, 宋敏红, 吴统文, 等, 2017.世界干旱气候研究动态及进展综述(Ⅰ): 若干主要干旱区国家的研究动态及联合国的贡献[J].高原气象, 36(6): 1433-1456.DOI: 10.7522/j.issn.1000-0534.2017.00075 . |
null | 王嘉媛, 胡学平, 许平平, 等, 2015.西南地区2次秋冬春季持续严重干旱气候成因对比[J].干旱气象, 33(2): 202-212.DOI: 10.11755/j.issn.1006-7639(2015)-02-0202 . |
null | |
null | 王卫国, 李弘毅, 朱小凡, 等, 2022.1979-2018年青藏高原不同地区积雪季极端降水水汽来源分析[J].高原气象, 41 (6): 1367-1383.DOI: 10.7522/j.issn.1000-0534.2021.00080 . |
null | 王映思, 肖天贵, 董雪峰, 2021.1961-2019年中国西南地区夏季长周期旱涝急转与大气环流特征[J].高原气象, 40(4): 760-772.DOI: 10.7522/j.issn.1000-0534.2020.00067 . |
null | 杨显玉, 吕雅琼, 文军, 等, 2022.三江源区域夏季降水异常的水汽输送及源地特征的研究[J].高原气象, 41(2): 465-476.DOI: 10.7522/j.issn.1000-0534.2022.00015 . |
null | |
null | 周李磊, 杨华, 刘睿, 等, 2017.基于TRMM数据的西南地区年降水时空特征研究[J].重庆师范大学学报(自然科学版), 34(1): 114-122+142.DOI: 10.11721/cqnuj20170102 . |
null | 曾钰婷, 张宇, 王煕曌, 等, 2022.2014年夏季一次那曲强降水的诊断分析和水汽来源的模拟研究[J].高原气象, 41(2): 477-488.DOI: 10.7522/j.issn.1000-0534.2021.00077 . |
null | 朱丽, 刘蓉, 王欣, 等, 2019.基于FLEXPART模式对黄河源区盛夏降水异常的水汽源地及输送特征研究[J].高原气象, 38(3): 484-496.DOI: 10.7522/j.issn.1000-0534.2019.00015 . |
/
〈 |
|
〉 |