收稿日期: 2022-10-09
修回日期: 2023-02-14
网络出版日期: 2023-11-14
基金资助
国家重点研发计划项目(2018YFC1505205); 西藏自治区科技计划项目(XZ202301ZY0039G); 国家自然科学基金项目(42305178); 国电大渡河流域水电开发有限公司项目(KB-KY-2021-001)
Climate Extremes in a Typical Glacier-related Debris Flow Watershed of Southeast Tibet During 1979 -2018
Received date: 2022-10-09
Revised date: 2023-02-14
Online published: 2023-11-14
强降雨和高温是冰川泥石流的主要诱发因素, 深入理解小流域冰川泥石流的孕灾气象条件变化规律, 可为冰川泥石流的预警预判和灾害防治等工作提供依据和基础数据。基于中国区域地面气象要素驱动数据集(1979-2018年), 利用Sen’s斜率法、 Mann-Kendall趋势及突变检验法、 滑动t检验法、 Morlet小波变换法、 变异系数(CV)和降雨集中指数(PCI)多种方法和指标, 详细分析了藏东南典型冰川泥石流流域卡达沟的降雨量、 气温和极端气候指数近40年的变化特征。结果表明: (1)年均气温和暖昼日数分别以0.05 ℃·a-1和1.46 d·a-1的速率显著上升, 暖昼日数年际波动极大。两者均具有32 a准周期以及中短尺度周期。(2)春、 夏、 秋、 冬季气温分别以0.044 ℃·a-1、 0.039 ℃·a-1、 0.049 ℃·a-1和0.06 ℃·a-1的速率显著上升。所有月份气温均呈显著升高趋势, 其中3月和11月气温波动极大。(3)年降雨量下降趋势不显著。极端降雨日数无明显变化趋势, 但年际波动较大, 于1988年发生了突变。年降雨量和年极端降雨日数均具有16~22 a、 8~10 a、 4~6 a、 2~5 a和2~3 a的多尺度周期。(4)降雨的年内分配总体上较均衡。除6、 7月降雨量以1.44 mm·a-1和1.15 mm·a-1的速率呈显著减少趋势外, 季节降雨和月降雨总体变化趋势不显著。总体来看, 卡达沟流域正处于湿热向干热的过渡期, 目前还处于阶段性的高温期和多周期强振幅中心叠加的丰水期。同时暖昼日数、 极端降雨日数以及月降雨存在中等及以上变异, 容易发生极端旱涝事件。极端水热条件组合增加了卡达沟冰川泥石流未来暴发的风险。
李豪 , 刘双 , 胡凯衡 . 1979 -2018年藏东南典型冰川泥石流流域极端气候事件分析[J]. 高原气象, 2023 , 42(6) : 1518 -1528 . DOI: 10.7522/j.issn.1000-0534.2023.00014
Heavy rainfall and high air temperature are the main factors inducing glacial debris flows.In-depth understanding of the variation of disaster-pregnant meteorological conditions of glacial debris flows in small watersheds can provide basis and basic data for early warning and disaster prevention of glacial debris flows.Based on the China Meteorological Forcing Dataset (CMFD) (1979 -2018), the inter-annual and intra-annual variation characteristics of rainfall, air temperature, and extreme climate index in Kada valley are analyzed using several methods, including Sen's slope, Mann-Kendall trend and mutation test, Sliding t-test, Morlet wavelet transform, coefficient of variation (CV), and precipitation concentration index (PCI).The results show that: (1) Both the average annual air temperature and the warm days showed a significant rising trend at rates of 0.05 ℃·a-1 and 1.46 d·a-1, respectively, but the inter-annual variance of the warm days was very high.Both the average annual air temperature and the warm days exhibited quasi-periods of 32 a and mid to short-term scale periods.(2) The air temperature in spring, summer, autumn and winter increased significantly at rates of 0.044 ℃·a-1, 0.039 ℃·a-1, 0.049 ℃·a-1 and 0.06 ℃·a-1, respectively.The air temperature increased significantly in all months, with March and November showing significant inter-annual fluctuations.(3) The decreasing trend of annual rainfall was not significant.Although no significant trend in extreme rainfall days was observed, it fluctuated considerably from year to year, with a sudden change occurring in 1988.Both annual rainfall and extreme rainfall days exhibited multiscale periods of 16~22 a, 8~10 a, 4~6 a, 2~5 a and 2~3 a.(4) The intra-annual distribution of rainfall is generally more balanced.The overall changing pattern of seasonal and monthly rainfall was not significant, except for a noticeable decline in rainfall during June and July, at rates of 1.44 mm·a-1 and 1.15 mm·a-1, respectively.In general, the climate in the Kada valley is transitioning from hot and humid to dry and hot.Additionally, it is in the rainy period of multiscale periodic strong amplitude centers superposition of 2~3 a and 4~6 a, as well as the high air temperature period of 8~11 a.At the same time, the warm days, extreme rainfall days, and monthly rainfall have moderate or greater variation, increasing the likelihood of extreme drought and flood events.The combination of extreme hydrothermal conditions raises the risk of glacial debris flow outbreak in the Kada valley.
Key words: climate change; extreme climate; glacial debris flow; small watershed
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | 白宇轩, 杜军, 王挺, 等, 2022.1971~2020年藏东南极端降水指数的时空变化特征[J].高原山地气象研究, 42(3): 31-40.DOI: 10.3969/j.issn.1674-2184.2022.03.004 . |
null | |
null | 陈德亮, 徐柏青, 姚檀栋, 等, 2015.青藏高原环境变化科学评估: 过去、 现在与未来[J].科学通报, 60(32): 3025-3035+3021-3022.DOI: 10.1360/n972014-01370 . |
null | 陈宁生, 周海波, 胡桂胜, 2011.气候变化影响下林芝地区泥石流发育规律研究[J].气候变化研究进展, 7(6): 6.DOI: 10. 3969/j.issn.1673-1719.2011.06.005 . |
null | 程尊兰, 田金昌, 张正波, 等, 2009.藏东南冰湖溃决泥石流形成的气候因素与发展趋势[J].地学前缘, 16(6): 207-214.DOI: 10.3321/j.issn: 1005-2321.2009.06.023 . |
null | 崔鹏, 陈容, 向灵芝, 等, 2014.气候变暖背景下青藏高原山地灾害及其风险分析[J].气候变化研究进展, 10(2): 103-109.DOI: 10.3969/j.issn.1673-1719.2014.02.004 . |
null | 崔鹏, 贾洋, 苏凤环, 等, 2017.青藏高原自然灾害发育现状与未来关注的科学问题[J].中国科学院院刊, 32(9): 985-992.DOI: 10.16418/j.issn.1000-3045.2017.09.008 . |
null | 邓明枫, 陈宁生, 丁海涛, 等, 2013.2007年西藏东南部群发性泥石流的水热条件及其形成机制[J].自然灾害学报, 22(4): 128-134.DOI: 10.13577/j.jnd.2013.0416 . |
null | 董晴雪, 罗斯琼, 文小航, 等, 2022.近60年来藏东南降水变化及其对土壤温度与冻融过程的影响[J].高原气象, 41(2): 404-419.DOI: 10.7522/j.issn.1000-0534.2021.00065 . |
null | 冯晓莉, 申红艳, 李万志, 等, 2020.1961-2017年青藏高原暖湿季节极端降水时空变化特征[J].高原气象, 39(4): 694-705.DOI: 10.7522/j.issn.1000-0534.2020.00029 . |
null | 高杨, 李滨, 冯振, 等, 2017.全球气候变化与地质灾害响应分析[J].地质力学学报, 23(1): 65-77.DOI: 10.3969/j.issn. 1006-6616.2017.01.002 . |
null | |
null | 蒋忠信, 2001.西藏帕隆藏布泥石流沟谷纵剖面形态统计分析[J].中国地质灾害与防治学报, 12(4): 41-47.DOI: 10.3969/j.issn.1003-8035.2001.04.008 . |
null | 敬文茂, 任小凤, 赵维俊, 2022.1965-2018年祁连山北麓及其附近地区气温与降水变化的时空格局[J].高原气象, 41(4): 876-886.DOI: 810.7522/j.issn.1000-0534.2021.00075 . |
null | 李邦东, 周旭, 赵中军, 等, 2013.近50年中国东北地区不同类型和等级降水事件变化特征[J].高原气象, 32(5): 1414-1424.DOI: 10.7522/j.issn.1000-0534.2012.00114 . |
null | 刘建康, 程尊兰, 2015.西藏古乡沟泥石流与气象条件的关系[J].科学技术与工程, 15(9): 45-49+55.DOI: 10.3969/j.issn. 1671-1815.2015.09.007 . |
null | 罗伦, 旦增, 朱立平, 等, 2021.藏东南色季拉山气温和降水垂直梯度变化[J].高原气象, 40(1): 37-46.DOI: 10.7522/j.issn. 1000-0534.2019.00123 . |
null | 鲁建莹, 余国安, 黄河清, 2021.气候变化影响下高山区泥石流形成机制研究及展望[J].冰川冻土, 43(2): 555-567.DOI: 10. 7522/j.issn.1000-0240.2021.0043 . |
null | |
null | 史培军, 杨文涛, 2020.山区孕灾环境下地震和极端天气气候对地质灾害的影响[J].气候变化研究进展, 16(4): 405-414.DOI: 10.12006/j.issn.1673-1719.2019.174 . |
null | 舒涛, 叶唐进, 李俊杰, 等, 2021.降雨量及叠加预测方法研究[J].高原气象, 40(1): 169-177.DOI: 10.7522/j.issn.1000-0534. 2020.00014 . |
null | 向灵芝, 刘志红, 柳锦宝, 等, 2013.1980-2010年西藏波密地区典型冰川变化特征及其对气候变化的响应[J].冰川冻土, 35(3): 593-600.DOI: 10.7522/j.issn.1000-0240.2013.0068 . |
null | 向楠, 巩远发, 李卓敏, 2023.青藏高原东部和西南地区低温冰冻雨雪事件的时空变化特征[J].高原气象, 42(1): 13-24.DOI: 10.7522/j.issn.1000-0534.2022.00034 . |
null | 颜明, 李夫星, 贺莉, 等, 2016.夏季风等环流因子对黄河中游径流量周期变化的影响[J].地理科学, 36(6): 917-925.DOI: 10. 13249/j.cnki.sgs.2016.06.015 . |
null | 阳坤, 何杰, 2019.中国区域地面气象要素驱动数据集(1979-2018)[DS].国家青藏高原科学数据中心, DOI: 10.11888/AtmosphericPhysics.tpe.249369.file . |
null | |
null | 杨耀先, 胡泽勇, 路富全, 等, 2022.青藏高原近60年来气候变化及其环境影响研究进展[J].高原气象, 41(1): 1-10.DOI: 10.7522/j.issn.1000-0534.2021.00117 . |
null | 余忠水, 德庆卓嘎, 罗布次仁, 等, 2009.西藏波密县天摩沟“9·4”特大泥石流灾害成因初步分析[J].中国地质灾害与防治学报, 20(1): 6-10.DOI: 10.3969/j.issn.1003-8035.2009.01.002 . |
null | 张沛全, 刘小汉, 2008.雅鲁藏布江大拐弯入口段泥石流特征及应对措施[J].中国地质灾害与防治学报, 19(1): 12-17.DOI: 10.3969/j.issn.1003-8035.2008.01.003 . |
null | 张宇欣, 李育, 朱耿睿, 2019.青藏高原海拔要素对温度、 降水和气候型分布格局的影响[J].冰川冻土, 41(3): 505-515.DOI: 10.7522/j.issn.1000-0240.2019.0513 . |
null | 钟鑫, 赵德军, 黎厚富, 2018.西藏波密县卡达沟泥石流发育特征及危险性评价[J].人民长江, 49(S2): 103-107.DOI: 10. 16232/j.cnki.1001-4179.2018.S2.026 . |
/
〈 |
|
〉 |