论文

1979 -2018年藏东南典型冰川泥石流流域极端气候事件分析

  • 李豪 ,
  • 刘双 ,
  • 胡凯衡
展开
  • 1. 中国科学院、 水利部成都山地灾害与环境研究所,四川 成都 610299
    2. 中国科学院大学,北京 100049

李豪(1997 -), 男, 四川眉山人, 博士研究生, 主要从事气候变化与泥石流灾害研究.E -mail:

收稿日期: 2022-10-09

  修回日期: 2023-02-14

  网络出版日期: 2023-11-14

基金资助

国家重点研发计划项目(2018YFC1505205); 西藏自治区科技计划项目(XZ202301ZY0039G); 国家自然科学基金项目(42305178); 国电大渡河流域水电开发有限公司项目(KB-KY-2021-001)

Climate Extremes in a Typical Glacier-related Debris Flow Watershed of Southeast Tibet During 1979 -2018

  • Hao LI ,
  • Shuang LIU ,
  • Kaiheng HU
Expand
  • 1. Institute of Mountain Hazards and Environment,Chinese Academy of Sciences,Chengdu 610299,Sichuan,China
    2. University of Chinese Academy of Sciences,Beijing 100049,China

Received date: 2022-10-09

  Revised date: 2023-02-14

  Online published: 2023-11-14

摘要

强降雨和高温是冰川泥石流的主要诱发因素, 深入理解小流域冰川泥石流的孕灾气象条件变化规律, 可为冰川泥石流的预警预判和灾害防治等工作提供依据和基础数据。基于中国区域地面气象要素驱动数据集(1979-2018年), 利用Sen’s斜率法、 Mann-Kendall趋势及突变检验法、 滑动t检验法、 Morlet小波变换法、 变异系数(CV)和降雨集中指数(PCI)多种方法和指标, 详细分析了藏东南典型冰川泥石流流域卡达沟的降雨量、 气温和极端气候指数近40年的变化特征。结果表明: (1)年均气温和暖昼日数分别以0.05 ℃·a-1和1.46 d·a-1的速率显著上升, 暖昼日数年际波动极大。两者均具有32 a准周期以及中短尺度周期。(2)春、 夏、 秋、 冬季气温分别以0.044 ℃·a-1、 0.039 ℃·a-1、 0.049 ℃·a-1和0.06 ℃·a-1的速率显著上升。所有月份气温均呈显著升高趋势, 其中3月和11月气温波动极大。(3)年降雨量下降趋势不显著。极端降雨日数无明显变化趋势, 但年际波动较大, 于1988年发生了突变。年降雨量和年极端降雨日数均具有16~22 a、 8~10 a、 4~6 a、 2~5 a和2~3 a的多尺度周期。(4)降雨的年内分配总体上较均衡。除6、 7月降雨量以1.44 mm·a-1和1.15 mm·a-1的速率呈显著减少趋势外, 季节降雨和月降雨总体变化趋势不显著。总体来看, 卡达沟流域正处于湿热向干热的过渡期, 目前还处于阶段性的高温期和多周期强振幅中心叠加的丰水期。同时暖昼日数、 极端降雨日数以及月降雨存在中等及以上变异, 容易发生极端旱涝事件。极端水热条件组合增加了卡达沟冰川泥石流未来暴发的风险。

本文引用格式

李豪 , 刘双 , 胡凯衡 . 1979 -2018年藏东南典型冰川泥石流流域极端气候事件分析[J]. 高原气象, 2023 , 42(6) : 1518 -1528 . DOI: 10.7522/j.issn.1000-0534.2023.00014

Abstract

Heavy rainfall and high air temperature are the main factors inducing glacial debris flows.In-depth understanding of the variation of disaster-pregnant meteorological conditions of glacial debris flows in small watersheds can provide basis and basic data for early warning and disaster prevention of glacial debris flows.Based on the China Meteorological Forcing Dataset (CMFD) (1979 -2018), the inter-annual and intra-annual variation characteristics of rainfall, air temperature, and extreme climate index in Kada valley are analyzed using several methods, including Sen's slope, Mann-Kendall trend and mutation test, Sliding t-test, Morlet wavelet transform, coefficient of variation (CV), and precipitation concentration index (PCI).The results show that: (1) Both the average annual air temperature and the warm days showed a significant rising trend at rates of 0.05 ℃·a-1 and 1.46 d·a-1, respectively, but the inter-annual variance of the warm days was very high.Both the average annual air temperature and the warm days exhibited quasi-periods of 32 a and mid to short-term scale periods.(2) The air temperature in spring, summer, autumn and winter increased significantly at rates of 0.044 ℃·a-1, 0.039 ℃·a-1, 0.049 ℃·a-1 and 0.06 ℃·a-1, respectively.The air temperature increased significantly in all months, with March and November showing significant inter-annual fluctuations.(3) The decreasing trend of annual rainfall was not significant.Although no significant trend in extreme rainfall days was observed, it fluctuated considerably from year to year, with a sudden change occurring in 1988.Both annual rainfall and extreme rainfall days exhibited multiscale periods of 16~22 a, 8~10 a, 4~6 a, 2~5 a and 2~3 a.(4) The intra-annual distribution of rainfall is generally more balanced.The overall changing pattern of seasonal and monthly rainfall was not significant, except for a noticeable decline in rainfall during June and July, at rates of 1.44 mm·a-1 and 1.15 mm·a-1, respectively.In general, the climate in the Kada valley is transitioning from hot and humid to dry and hot.Additionally, it is in the rainy period of multiscale periodic strong amplitude centers superposition of 2~3 a and 4~6 a, as well as the high air temperature period of 8~11 a.At the same time, the warm days, extreme rainfall days, and monthly rainfall have moderate or greater variation, increasing the likelihood of extreme drought and flood events.The combination of extreme hydrothermal conditions raises the risk of glacial debris flow outbreak in the Kada valley.

参考文献

null
Dal Pont I V Moreiras S M Ossa F S, et al, 2020.Debris flows triggered from melt of seasonal snow and ice within the active layer in the semi-arid Andes[J].Permafrost and Periglacial Processes31 (1): 57-68.DOI: 10.1002/ppp.2020 .
null
De Luis M Gonzalez-Hidalgo J C Brunetti M, et al, 2011.Rainfall concentration changes in Spain 1946-2005[J].Natural Hazards and Earth System Sciences11(5): 1259-1265.DOI: 10.5194/nhess-11-1259-2011 .
null
Deng M F Chen N S Liu M2017.Meteorological factors driving glacial till variation and the associated periglacial debris flows in Tianmo Valley, south-eastern Tibetan Plateau[J].Natural Hazards and Earth System Sciences17(3): 345-356.DOI: 10. 5194/nhess-17-345-2017 .
null
Erokhin S A Zaginaev V V Meleshko A A, et al, 2018.Debris flows triggered from non-stationary glacier lake outbursts: the case of the Teztor Lake complex (Northern Tian Shan, Kyrgyzstan) [J].Landslides15 (1): 83-98.DOI: 10.1007/s10346-10017-10862-10343 .
null
He J Yang K Tang W J, et al, 2020.The first high-resolution meteorological forcing dataset for land process studies over China[J].Scientific Data7(1): 1-11.DOI: 10.1038/s41597-020-0369-y .
null
Liu S Hu K H Zhang S J, et al, 2019.Comprehensive evaluation of satellite-based rainfall at sub-daily time scales over a high-profile watershed with complex terrain[J].Earth and Space Science6(12): 2347-2361.DOI: 10.1029/2019ea000855 .
null
Stoffel M Bollschweiler M Beniston M2011.Rainfall characteristics for periglacial debris flows in the Swiss Alps: past incidences-potential future evolutions[J].Climatic Change105 (1-2): 263-280.DOI: 210.1007/s10584-10011-10036-10586 .
null
Zhang X Yang F2004.RClim Dex 1.1[CP].
null
Zou Q Cui P Jiang H, et al, 2020.Analysis of regional river blocking by debris flows in response to climate change[J].Science of the Total Environment741(7): 140262.DOI: 10.1016/j.scitotenv.2020.140262 .
null
白宇轩, 杜军, 王挺, 等, 2022.1971~2020年藏东南极端降水指数的时空变化特征[J].高原山地气象研究42(3): 31-40.DOI: 10.3969/j.issn.1674-2184.2022.03.004 .
null
曹丽, 王华, 2014.波密县近30 a气候变化特征[J].南方农业8(33): 186-188.DOI: 10.19415/j.cnki.1673-890x.2014.33.084 .
null
陈德亮, 徐柏青, 姚檀栋, 等, 2015.青藏高原环境变化科学评估: 过去、 现在与未来[J].科学通报60(32): 3025-3035+3021-3022.DOI: 10.1360/n972014-01370 .
null
陈宁生, 周海波, 胡桂胜, 2011.气候变化影响下林芝地区泥石流发育规律研究[J].气候变化研究进展7(6): 6.DOI: 10. 3969/j.issn.1673-1719.2011.06.005 .
null
程尊兰, 田金昌, 张正波, 等, 2009.藏东南冰湖溃决泥石流形成的气候因素与发展趋势[J].地学前缘16(6): 207-214.DOI: 10.3321/j.issn: 1005-2321.2009.06.023 .
null
崔鹏, 陈容, 向灵芝, 等, 2014.气候变暖背景下青藏高原山地灾害及其风险分析[J].气候变化研究进展10(2): 103-109.DOI: 10.3969/j.issn.1673-1719.2014.02.004 .
null
崔鹏, 贾洋, 苏凤环, 等, 2017.青藏高原自然灾害发育现状与未来关注的科学问题[J].中国科学院院刊32(9): 985-992.DOI: 10.16418/j.issn.1000-3045.2017.09.008 .
null
邓明枫, 陈宁生, 丁海涛, 等, 2013.2007年西藏东南部群发性泥石流的水热条件及其形成机制[J].自然灾害学报22(4): 128-134.DOI: 10.13577/j.jnd.2013.0416 .
null
董晴雪, 罗斯琼, 文小航, 等, 2022.近60年来藏东南降水变化及其对土壤温度与冻融过程的影响[J].高原气象41(2): 404-419.DOI: 10.7522/j.issn.1000-0534.2021.00065 .
null
冯晓莉, 申红艳, 李万志, 等, 2020.1961-2017年青藏高原暖湿季节极端降水时空变化特征[J].高原气象39(4): 694-705.DOI: 10.7522/j.issn.1000-0534.2020.00029 .
null
高杨, 李滨, 冯振, 等, 2017.全球气候变化与地质灾害响应分析[J].地质力学学报23(1): 65-77.DOI: 10.3969/j.issn. 1006-6616.2017.01.002 .
null
胡桂胜, 陈宁生, 邓明枫, 等, 2011.西藏林芝地区泥石流类型及形成条件分析[J].水土保持通报31(2): 6.DOI: CNKI: SUN: STTB.0.2011-02-040 .
null
蒋忠信, 2001.西藏帕隆藏布泥石流沟谷纵剖面形态统计分析[J].中国地质灾害与防治学报12(4): 41-47.DOI: 10.3969/j.issn.1003-8035.2001.04.008 .
null
敬文茂, 任小凤, 赵维俊, 2022.1965-2018年祁连山北麓及其附近地区气温与降水变化的时空格局[J].高原气象41(4): 876-886.DOI: 810.7522/j.issn.1000-0534.2021.00075 .
null
李邦东, 周旭, 赵中军, 等, 2013.近50年中国东北地区不同类型和等级降水事件变化特征[J].高原气象32(5): 1414-1424.DOI: 10.7522/j.issn.1000-0534.2012.00114 .
null
刘建康, 程尊兰, 2015.西藏古乡沟泥石流与气象条件的关系[J].科学技术与工程15(9): 45-49+55.DOI: 10.3969/j.issn. 1671-1815.2015.09.007 .
null
罗伦, 旦增, 朱立平, 等, 2021.藏东南色季拉山气温和降水垂直梯度变化[J].高原气象40(1): 37-46.DOI: 10.7522/j.issn. 1000-0534.2019.00123 .
null
鲁建莹, 余国安, 黄河清, 2021.气候变化影响下高山区泥石流形成机制研究及展望[J].冰川冻土43(2): 555-567.DOI: 10. 7522/j.issn.1000-0240.2021.0043 .
null
齐云龙, 邓明枫, 2019.川藏公路波密段九绒沟泥石流形成机制研究[J].灾害学34(3): 123-127.DOI: CNKI: SUN: ZHXU. 0.2019-03-023 .
null
史培军, 杨文涛, 2020.山区孕灾环境下地震和极端天气气候对地质灾害的影响[J].气候变化研究进展16(4): 405-414.DOI: 10.12006/j.issn.1673-1719.2019.174 .
null
舒涛, 叶唐进, 李俊杰, 等, 2021.降雨量及叠加预测方法研究[J].高原气象40(1): 169-177.DOI: 10.7522/j.issn.1000-0534. 2020.00014 .
null
向灵芝, 刘志红, 柳锦宝, 等, 2013.1980-2010年西藏波密地区典型冰川变化特征及其对气候变化的响应[J].冰川冻土35(3): 593-600.DOI: 10.7522/j.issn.1000-0240.2013.0068 .
null
向楠, 巩远发, 李卓敏, 2023.青藏高原东部和西南地区低温冰冻雨雪事件的时空变化特征[J].高原气象42(1): 13-24.DOI: 10.7522/j.issn.1000-0534.2022.00034 .
null
颜明, 李夫星, 贺莉, 等, 2016.夏季风等环流因子对黄河中游径流量周期变化的影响[J].地理科学36(6): 917-925.DOI: 10. 13249/j.cnki.sgs.2016.06.015 .
null
阳坤, 何杰, 2019.中国区域地面气象要素驱动数据集(1979-2018)[DS].国家青藏高原科学数据中心, DOI: 10.11888/AtmosphericPhysics.tpe.249369.file .
null
杨俊, 徐智, 兰立军, 等, 2022.黄土高原典型小流域降水变化特征研究[J].中国水土保持, (8): 25-28.DOI: 10.14123/j.cnki.swcc.2022.0193 .
null
杨耀先, 胡泽勇, 路富全, 等, 2022.青藏高原近60年来气候变化及其环境影响研究进展[J].高原气象41(1): 1-10.DOI: 10.7522/j.issn.1000-0534.2021.00117 .
null
余忠水, 德庆卓嘎, 罗布次仁, 等, 2009.西藏波密县天摩沟“9·4”特大泥石流灾害成因初步分析[J].中国地质灾害与防治学报20(1): 6-10.DOI: 10.3969/j.issn.1003-8035.2009.01.002 .
null
张沛全, 刘小汉, 2008.雅鲁藏布江大拐弯入口段泥石流特征及应对措施[J].中国地质灾害与防治学报19(1): 12-17.DOI: 10.3969/j.issn.1003-8035.2008.01.003 .
null
张宇欣, 李育, 朱耿睿, 2019.青藏高原海拔要素对温度、 降水和气候型分布格局的影响[J].冰川冻土41(3): 505-515.DOI: 10.7522/j.issn.1000-0240.2019.0513 .
null
钟鑫, 赵德军, 黎厚富, 2018.西藏波密县卡达沟泥石流发育特征及危险性评价[J].人民长江49(S2): 103-107.DOI: 10. 16232/j.cnki.1001-4179.2018.S2.026 .
文章导航

/