论文

甘肃东南部暖季对流活动的雷达气候学特征

  • 肖玮 ,
  • 刘维成 ,
  • 傅朝 ,
  • 李文学 ,
  • 付杰 ,
  • 苟尚 ,
  • 张伟
展开
  • 1. 兰州中心气象台,甘肃 兰州 730020
    2. 甘肃省气象信息与技术装备保障中心,甘肃 兰州 730020

肖玮(1983 -), 女, 甘肃陇南人, 高级工程师, 主要从事强对流天气监测预警及研究工作. E-mail:

收稿日期: 2022-11-07

  修回日期: 2023-03-13

  网络出版日期: 2023-11-14

基金资助

国家自然科学基金重点项目(42230611); 甘肃省气象局创新团队项目(GXQXCXTD-2020-01); 甘肃省气象局气象科研项目(ZcCg2023-27)

Radar Climatological Characteristics of Warm Season Convection in Southeast of Gansu

  • Wei XIAO ,
  • Weicheng LIU ,
  • Zhao FU ,
  • Wenxue LI ,
  • Jie FU ,
  • Shang GOU ,
  • Wei ZHANG
Expand
  • 1. Lanzhou Central Meteorological Observatory,Lanzhou 730020,Gansu,China
    2. Gansu Meteorological Information and Technology Support Center,Lanzhou 730020,Gansu,China

Received date: 2022-11-07

  Revised date: 2023-03-13

  Online published: 2023-11-14

摘要

基于天水多普勒天气雷达资料, 通过“最大值法”筛选出对流回波样本, 利用TITAN(雷暴识别跟踪分析和临近预报)算法对对流风暴属性特征追踪统计, 分析了甘肃东南部暖季(6 -8月)对流活动的雷达气候学特征。结果表明: (1)对流活动频次多集中在高海拔山区附近, 大值中心位于六盘山西侧山脉的迎风坡或西秦岭山脉起伏较大的区域, 其中8月为对流活动高峰期。(2)对流风暴以西北向东南方向传播为主, 不同月份传播特征存在一定差异; 6月传播速度最快、 8月最慢。(3)对流活动发生频率日变化特征呈单峰分布, 主峰区位于16:00 -17:00(北京时); 不同地形对流发生、 发展具有不同的日变化特征, 午后高海拔区域是热力对流发生的高频区, 夜间对流活动在山区、 河谷、 盆地、 平原等地形均有发生。(4)不同月份对流风暴的日变化存在明显差异, 6月午后太阳加热、 地形强迫对对流风暴的影响最为显著, 而7、 8月夜发对流对高原边坡复杂地形响应更高。午后组织性较好的风暴传播方向与山脉走向及坡向关系密切, 夜间时段与500 hPa盛行风关系密切。(5)超过90%的对流风暴持续时间在36 min以内, 仅有1%的风暴持续时间大于1 h。

本文引用格式

肖玮 , 刘维成 , 傅朝 , 李文学 , 付杰 , 苟尚 , 张伟 . 甘肃东南部暖季对流活动的雷达气候学特征[J]. 高原气象, 2023 , 42(6) : 1536 -1547 . DOI: 10.7522/j.issn.1000-0534.2023.00023

Abstract

The radar climatology characteristics of convection in southeastern Gansu Province during the warm season (June to August)were investigated using Tianshui Doppler radar data that filtered by “Maximum Method” and tracking statistics by “TITAN”(Thunderstorm identification Tracking Analysis and Nowcasting) algorithm.The frequency of convective activity showed large value in high altitude mountains with the Great value center located in windward slope of Western Liupanshan Mountain and undulating region of western Qinling Mountains, and the peak time in August.The convective storm mainly propagated from northwest to southeast, meanwhile the propagation characteristics presented a difference in different months and it spreads fastest in June and slowest in August.The diurnal variation of convective activity showed a unimodal distribution of frequency with peak region at 16:00 -17:00 (Beijing Time).It's also showed in the occurrence and development of convection in different terrain occurrence and development in different terrain conditions with the high frequency of thermal convection mainly at high altitude area in the afternoon and presentation in the mountain, river valley, basin and plain respectively at night.The diurnal variation of convective storms in different months was obviously different.The influence of solar heating and topographic forcing on convective storms in the afternoon of June was the most significant, while the response of convective storms in the night of July and August was higher to the complex topography of the plateau slope.The propagation direction of the well-organized storm in the afternoon was closely related to the extension and slope direction of the mountain, and was closely related to the prevailing winds at 500 hPa at night.More than 90% convective storms lasted less than 36 minutes, and only 1% lasted longer than 1 hour.

参考文献

null
Carbone R E Tuttle J D2008.Rainfall occurrence in the U.S.warm season: the diurnal cycle[J].Journal of Climate21(16): 4132-4146.
null
Carbone R E Tuttle J D Ahijevych D A, et al, 2002.Inferences of predictability associated with warm season precipitation episodes[J].Journal of the Atmospheric Sciences59(13): 2033-2056.DOI: 10.1175/1520-0469(2002)0592.0.CO; 2 .
null
Chen M Wang Y Gao F, et al, 2012.Diurnal variations in convective storm activity over contiguous North China during the warm season based on radar mosaic climatology[J].Journal of Geophysical Research117(D20): d20115-d20115-14.DOI: 10. 1029/2012JD018158 .
null
Delrieu G Boudevillain B Nicol J, et al, 2009.Bollene-2002 experiment: radar quantitative precipitation estimation in the cevennes-vivarais region[J].Journal of Applied Meteorology and Climatology48(7): 1422-1447.DOI: 10.1175/2008JAMC1 987.1 .
null
Mohee F M Miller C2010.Climatology of thunderstorms for North Dakota, 2002-06[J].Journal of Applied Meteorology and Climatology49(9): 1881-1890.DOI: 10.1175/2010JAMC2400.1 .
null
Goudenhoofdt E Delobbe L2013.Statistical characteristics of convective storms in Belgium derived from volumetric weather radar observations[J].Journal of Applied Meteorology and Climatology52(4): 918-934.DOI: 10.1175/JAMC-D-12-079.1 .
null
Hocker J E Basara J B2008.A 10-year spatial climatology of squall line storms across Oklahoma[J].International Journal of Climatology: A Journal of the Royal Meteorological Society, 28: 765-775.DOI: 10.1002/joc.1579 .
null
Hsu H M Moncrieff M W Tung W W, et al, 2006.Multiscale temporal variability of warm-season precipitation over North America: statistical analysis of radar measurements[J].Journal of the Atmospheric Sciences63(9): 2355-2368.DOI: 10.1175/JAS3752.1 .
null
Johnson J T Mackeen P L Witt A, et al, 1998.The storm cell identification and tracking algorithm: an enhanced WSR-88D algorithm[J].Weather and Forecasting263(5): 562-584.DOI: 10.1175/1520-0434(1998)0132.0.CO; 2 .
null
Kessinger C Ellis S Andel J V, et al, 2003.The AP ground clutter mitigation scheme for the WSR-88D[C]//Seattle Washington: 31st conference on radar meteorology.
null
Lang T J Ahijevych D A Nesbitt S W, et al, 2007.Radar-observed characteristics of precipitating systems during NAME 2004[J].Journal of Climate20(9): 1713-1733.
null
Lin P F Chang P L Jou B J D, et al, 2011.Warm season afternoon thunderstorm characteristics under weak synoptic-scale forcing over Taiwan Island.[J].Weather and Forecasting26(1): 44-60.DOI: 10.1175/2010WAF2222386.1 .
null
Liu W B Li X G2016.Life cycle characteristics of warm-season severe thunderstorms in central United States from 2010 to 2014[J].Climate4(3): 45.DOI: info: doi/10.3390/cli4030045 .
null
Ma Y Wang X Tao Z Y1997.Geographic distribution and life cycle of mesoscale convective system in China and its vicinity[J].Prog Nature Science7(5): 701-706.DOI: 10.1007/s002690050078 .
null
Murray J C Colle B A2011.The spatial and temporal variability of convective storms over the Northeast United States during the warm season[J].Monthly Weather Review139(3): 992-1012.DOI: 10.1175/2010MWR3316.1 .
null
Parker M D Knievel J C2005.Do meteorologists suppress thunderstorms?Radar-derived statistics and the behavior of moist convection[J].Bulletin of the American Meteorological Society86(3): 341-358.DOI: 10.1175/BAMS-86-3-341 .
null
Pavai C Vamos C2006.Statistical characteristics of reflectivity field in areas covered by the Bobohalma WSR-98D radar[J].Romanian Journal of Meteorology8(1/2): 1-20.
null
Saxen T R Mueller C K Warner T T, et al, 2008.The operational mesogamma-scale analysis and forecast system of the U.S.army test and evaluation command.Part IV: the white sands missile range auto-nowcast system[J].Journal of Applied Meteorology and Climatology47(4): 1123-1139.DOI: 10.1175/2007JAMC1656.1 .
null
白晓平, 靳双龙, 王式功, 等, 2018.中国西北地区东部短时强降水时空特征[J].中国沙漠38(2): 410-417.DOI: 10.7522/j.issn.1000-694X.2017.00006 .
null
鲍文中, 张强, 陶建红, 等, 2018.甘肃气候[M].北京: 气象出版社, 185-200.
null
毕宝贵, 2004.中尺度地形对陕南暴雨的影响研究[D].南京: 南京信息工程大学, 2-42.
null
陈兴超, 2016.华南暖季对流的雷达气候学特征及其机制研究[D].南京: 南京大学, 1-51.
null
狄潇泓, 许东蓓, 肖玮, 等, 2017.“5·10”岷县短时暴雨斜压锋生特征和不稳定条件分析[J].干旱气象35(1): 108-115.DOI: 10.11755/j.issn.1006-7639(2017)-01-0108 .
null
顾薇, 陈丽娟, 2019.2018年夏季海洋大气特征及对我国气候的影响[J].气象45(1): 126-134.
null
管理, 戴建华, 赵渊明, 等, 2020.上海地区暖季午后对流的雷达气候学特征分析[J].气象46(12): 1543-1554.DOI: 10.7519/j.issn.1000-0526.2020.12.002 .
null
郭慧, 黄涛, 邓茂芝, 等, 2007.甘肃天水地区45 a来强降水与洪涝灾害特征分析[J].冰川冻土29(5): 808-812.DOI: 10.3969/j.issn.1000-0240.2007.05.020 .
null
韩雷, 俞小鼎, 郑永光, 等, 2009.京津及邻近地区暖季强对流风暴的气候分布特征[J].科学通报54(11): 1585-1590.DOI: 10. 1360/csb2009-54-11-1585 .
null
何光碧, 屠妮妮, 张利红, 等, 2013.青藏高原东侧一次低涡暴雨过程地形影响的数值试验[J].高原气象32(6): 1546-1556.DOI: 10.7522/j.issn.1000-0534.2012.00150 .
null
黄玉霞, 王宝鉴, 王研峰, 等, 2017a.1974-2013年甘肃冰雹日数的变化特征[J].气象43(4): 10.DOI: 10.7519/j.issn.1000-0526.2017.04.007 .
null
黄玉霞, 王宝鉴, 王研峰, 等, 2017b.甘肃省夏季暴雨日数特征及其与大气环流关系[J].高原气象36(1): 183-194.DOI: 10. 7522/j.issn.1000-0534.2015.00118 .
null
孔祥伟, 杨建才, 李红, 等, 2021.甘肃河东地区不同环流形势下短时强降水的雷达回波特征分析[J].高原气象40(5): 1057-1070.DOI: 10.7522/j.issn.1000-0534.2020.00084 .
null
李栋梁, 刘德祥, 2000.甘肃气候[M].北京: 气象出版社, 3-20.
null
刘德祥, 白虎志, 董安祥, 2004.中国西北地区冰雹的气候特征及异常研究[J].高原气象23(6): 795-803.
null
刘黎平, 吴林林, 杨引明, 2007.基于模糊逻辑的分步式超折射地物回波识别方法的建立和效果分析[J].气象学报65(2): 252-260.DOI: 10.11676/qxxb2007.024 .
null
刘新伟, 王澄海, 郭润霞, 等, 2021.1981-2018年甘肃省极端暴雨天气过程的气候与环流特征[J].干旱气象39(5): 750-758. DOI: 10.11755/j.issn.1006-7639(2021)-05-0750 .
null
马淑红, 席元伟, 1997.新疆暴雨的若干规律性[J].气象学报55(2): 239-248.DOI: 10.11676/qxxb1997.025 .
null
渠永兴, 张强, 康凤琴, 2004.甘肃永登强对流云的雷达气候学特征分析[J].高原气象23(6): 773-780.
null
苏军锋, 张锋, 黄玉霞, 等, 2021.甘肃陇南市短时强降水时空分布特征及中尺度分析[J].干旱气象39(6): 966-973.DOI: 10. 11755/j.issn.1006-7639(2021)-06-0966 .
null
孙康远, 郑媛媛, 慕瑞琪, 等, 2017.南京及周边地区雷达气候学分析[J].气象学报75(1): 178-192.DOI: 10.11676/qxxb2017.004 .
null
王澄海, 张晟宁, 李课臣, 等, 2021.1961~2018年西北地区降水的变化特征[J].大气科学45(4): 713-724.DOI: 10.3878/j.issn.1006-9895.2101.20216 .
null
王楠, 赵强, 井宇, 等, 2018.秦岭北麓一次冷锋触发的短时强降水成因分析[J].高原气象37(5): 1277-1288.DOI: 10.7522/j.issn.1000-0534.2017.00070 .
null
魏栋, 刘丽伟, 田文寿, 等, 2021.基于卫星资料的西北地区高原涡强降水分析[J].高原气象40(4): 829-839. DOI: 10.7522/j.issn.1000-0534.2021.000021 .
null
肖艳姣, 刘黎平, 李中华, 等, 2010.雷达反射率因子数据中的亮带自动识别和抑制[J].高原气象29(1): 197-205.
null
俞小鼎, 2006.多普勒天气雷达原理与业务应用[M].北京: 气象出版社, 3-11.
null
张玲, 智协飞, 2010.南亚高压和西太副高位置与中国盛夏降水异常[J].气象科学30(4): 438-444.
null
张柳, 霍利微, 潘玉洁, 2020.华东地区夏季中尺度对流系统的活动特征及成因研究[J].大气科学学报43(2): 392-404.DOI: 10.13878/j.cnki.dqkxxb.20170111001 .
null
张之贤, 张强, 赵庆云, 等, 2013.陇东南地区短历时降水特征及其分布规律[J].中国沙漠33(4): 1184-1190.DOI: 10.7522/j.issn.1000-694X.2013.00167 .
null
赵强, 王楠, 高星星, 等, 2021.西安连续两天短时暴雨的对流条件及触发机制对比分析[J].高原气象40(4): 801-814.DOI: 10.7522/j.issn.1000-0534.2020.00053 .
null
赵庆云, 张武, 陈晓燕, 等, 2018.一次六盘山两侧强对流暴雨中尺度对流系统的传播特征[J].高原气象37(3): 767-776.DOI: 10.7522/j.issn.1000-0534.2017.00068 .
null
郑永光, 陈炯, 陈明轩, 等, 2007.北京及周边地区5~8月红外云图亮温的统计学特征及其天气学意义[J].科学通报52(14): 1700-1706.
null
支树林, 许东蓓, 潘赫拉, 等, 2021.陕西汉中及其周边地区对流活动的雷达气候特征分析[J].干旱气象39(4): 620-630.DOI: 10.11755/j.issn.1006-7639(2021)-04-0620 .
null
仲凌志, 刘黎平, 顾松山, 2007.层状云和对流云的雷达识别及在估测雨量中的应用[J].高原气象26(3): 593-602.
null
周毓荃, 潘留杰, 张亚萍, 2009.TITAN系统的移植开发及个例应用[J].大气科学学报32( 6): 752-764.DOI: 10.3969/j.issn. 1674-7097.2009.06.004 .
文章导航

/