论文

冬季乌拉尔山阻塞高压建立和维持与位势高度季节内振荡的联系

  • 徐彬羽 ,
  • 姚素香 ,
  • 孙庆飞
展开
  • 1. 南京信息工程大学大气科学学院,江苏 南京 210044
    2. 仪征市气象局,江苏 扬州 211400

徐彬羽(1998 -), 女, 青海海东人, 硕士研究生, 主要从事大气季节内振荡研究. E-mail:

收稿日期: 2022-04-20

  修回日期: 2023-02-06

  网络出版日期: 2023-11-14

基金资助

国家自然科学基金重点项目(41930969-3)

The Connections between the Establishment and Maintenance of Ural Blockings in Winter and Intra-seasonal Oscillation of Geopotential Height

  • Binyu XU ,
  • Suxiang YAO ,
  • Qingfei SUN
Expand
  • 1. School of Atmospheric Sciences NUIST,Nanjing 210044,Jiangsu,China
    2. Yizheng Meteorological Bureau,Yangzhou 211400,Jiangsu,China

Received date: 2022-04-20

  Revised date: 2023-02-06

  Online published: 2023-11-14

摘要

冬季乌拉尔山阻塞高压(以下简称乌山阻高)是导致我国出现大范围寒潮天气的重要影响系统, 探究其建立和维持过程与位势高度季节内振荡的联系能够为我国延伸期天气预报及短期气候预测提供参考因子。本文基于欧洲中期天气预报中心(European Centre for Medium-Range Weather Forecasts, ECMWF)提供的1979/1980 -2019/2020年ERA5逐日再分析数据, 采用主、 客观相结合的方法, 筛选得到114次冬季乌山阻高事件, 累计阻高日数591天。利用功率谱分析、 相关分析、 合成分析等统计方法, 分析乌山阻高与500 hPa位势高度季节内振荡之间的可能联系。结果表明: (1)近41年冬季乌拉尔山地区位势高度存在10~20天、 30天及45天左右的显著周期。通过多尺度分析发现, 在乌山阻高建立与维持期间位势高度的不同时间尺度分量贡献不同, 其中对乌山阻高建立贡献最大的是10~20天的准双周位势高度正异常, 阻高维持则决定于20~80天的季节内尺度位势高度正异常。在阻高建立和维持过程中, 准双周位势高度异常具有自西向东的传播特征, 季节内尺度位势高度异常无明显传播。(2)根据两次阻高事件发生的时间间隔长短将阻高事件分为连续阻高事件和其他阻高事件, 通过多个例合成分析和典型个例分析, 发现对于连续阻高事件而言, 位势高度异常的20~80天振荡对其建立和维持贡献最大, 但无明显传播特征, 准双周尺度位势高度异常表现出向西传播的信号, 而其他非连续阻高事件与不同时间尺度大气环流的联系则与所有阻高事件合成的结果相似。

本文引用格式

徐彬羽 , 姚素香 , 孙庆飞 . 冬季乌拉尔山阻塞高压建立和维持与位势高度季节内振荡的联系[J]. 高原气象, 2023 , 42(6) : 1548 -1561 . DOI: 10.7522/j.issn.1000-0534.2023.00006

Abstract

The Ural blocking high (UB) in winter is an important influence system leading to widespread cold snap in China.Exploring exploring the connections between its establishment and maintenance processes and intra-seasonal oscillations of geopotential height can provide reference factors for extended range forecasting and short-term climate prediction.By using the ERA5 daily reanalysis data provided by European Centre for Medium-Range Weather Forecasts (ECMWF) from 1979/1980 to 2019/2020, 114 winter UB events were selected by using a combined subjective and objective method, in which the cumulative number of blocking high days reached 591.The connections between the Ural blockings and the intra-seasonal oscillations of the 500 hPa geopotential height were analyzed by using power spectrum analysis, correlation analysis, synthesis analysis and other statistical methods.The results show that: (1) Geopotential height over the Ural Mountains has significant periods of 10~20 days, 30 days and 45 days during the last 41a winter.Through multi-scale analysis, we find that different time scale components of the geopotential height contribute differently during the establishment and maintenance processes of the Ural blockings, where the largest contribution to the establishment of Ural blocking highs is the quasi-biweekly geopotential height anomaly (10~20 days), and the maintenance of blocking high events is determined by intra-seasonal oscillations with a scale of 20~80 days.During the establishment and maintenance processes of blockings, the quasi-biweekly geopotential height anomaly propagates from west to east, while the intra-seasonal oscillations of the geopotential height anomaly have no significant propagation.(2) According to the time intervals between the occurrences of two events, blockings are classified into continuous blocking high events and other blocking high events.Through multiple case synthesis analysis and typical individual case analysis, we find that for continuous blocking high events, the intra-seasonal oscillations of the geopotential height anomaly contribute most to their establishment and maintenance processes, but have no significant propagation.The geopotential height anomaly shows a westward propagating signal on the quasi-biweekly scale.The connections between other non-continuous blockings and atmospheric circulation at different time scales are similar to the results of all blocking high events.

参考文献

null
Gao M X Yang S Y Li T M2020.The spatio-temporal variation of Pacific blocking frequency within winter month and its relationship with surface air temperature[J].Atmosphere11(9): 960.DOI: 10.3390/atmos11090960 .
null
Hoffmann L Gebhard G Dan L, et al, 2019.From ERA-Interim to ERA5: the considerable impact of ECMWF's next-generation reanalysis on Lagrangian transport simulations[J].Atmospheric Chemistry and Physics, 19: 3097-3124.DOI: 10.5194/acp-19-3097-2019 .
null
John R A Richard D R1983.The latitude-height structure of 40-50 day variations in atmospheric angular momentum[J].Journal of Atmospheric Sciences40(6): 1584-1591.DOI: 10.1175/1520-0469(1983)040&lt1584: TLHSOD&gt2.0.CO2 .
null
Madden R A Julian P R1971.Detection of a 40-50 day oscillation in the zonal wind in the Tropical Pacific[J].Journal of Atmospheric Sciences28(5): 702-708.DOI: 10.1175/1520-0469(1971)028<0702: DOADOI>2.0.CO; 2 .
null
Madden R A Julian P R1972.Description of global-scale circulation cells in the tropics with a 40-50 day period[J].Journal of Atmospheric Sciences29(6): 1109-1123.DOI: 10.1175/1520-0469(1972)029<1109: DOGSCC>2.0.CO; 2 .
null
Schneidereit A Schubert S Vargin P, et al, 2012.Large-scale flow and the Long-Lasting Blocking High over Russia: summer 2010[J].Monthly Weather Review140(9): 2967-2981.DOI: 10. 1175/MWR-D-11-00249.1 .
null
Simmons A J Wallace J M Branstator G W1983.Barotropic wave propagation and instability, and atmospheric teleconnection patterns[J].Journal of Atmospheric Sciences40(6): 1363-1392.DOI: 10.1175/1520-0469(1983)040&lt1363: BWPAIA&gt2. 0.CO2 .
null
Takaya K Nakamura H2005.Geographical Dependence of upper-level blocking formation associated with intraseasonal amplification of the Siberian High[J].Journal of the Atmospheric Sciences62(12): 4441-4449.DOI: 10.1175/JAS3628.1 .
null
Tibaldi S Molteni F1990.On the operational predictability of blocking[J].Tellus A: Dynamic Meteorology and Oceanography42(3): 343-365.DOI: 10.3402/tellusa.v42i3.11882 .
null
Yang S Y Li T M2017.The role of intraseasonal variability at mid-high latitudes in regulating Pacific blockings during boreal winter[J].International Journal of Climatology, 37: 1248-1256.DOI: 10.1002/joc.5080 .
null
Yang S Y Wu B Y Zhang R H, et al, 2013.The zonal propagating characteristics of low-frequency oscillation over the Eurasian mid-high latitude in boreal summer[J].Science China Earth Sciences56(9): 1566-1575.DOI: 10.1007/s11430-012-4576-z .
null
Yao S Tong Q Li T M, et al, 2020.The 10-30-day oscillation of winter rainfall in southern China and its relationship with circulation patterns in different latitudes[J].International Journal of Climatology40(6): 3268-3280.DOI: 10.1002/joc.6396 .
null
陈菊英, 王玉红, 王文, 2001.1998及1999年乌山阻高突变对长江中下游大暴雨过程的影响[J].高原气象20(4): 388-394.
null
韩荣青, 李维京, 董敏, 2006.北半球副热带—中纬度太平洋大气季节内振荡的纬向传播与东亚夏季旱涝[J].气象学报82(2): 149-163.
null
金荣花, 李艳, 王式功, 2009.四种客观定量表征阻塞高压方法的对比分析[J].高原气象28(5): 1121-1128.
null
金燕, 晏红明, 张茂松, 等, 2022.云南冬半年极端低温事件与大气环流的关系[J].高原气象41(5): 1302-1314.
null
李崇银, 1991.大气低频振荡[M].北京: 气象出版社.
null
李崇银, 2004.大气季节内振荡研究的新进展[J].自然科学进展14(7): 15-22.
null
李春, 孙照渤, 2003.中纬度阻塞高压指数与华北夏季降水的联系[J].大气科学学报26(4): 458-464.
null
梁萍, 丁一汇, 2012.东亚梅雨季节内振荡的气候特征[J].气象学报70(3): 418-435.
null
刘刚, 沈柏竹, 廉毅, 等, 2012.亚洲阻塞高压分类及其与东北冷涡活动和东北夏季低温的联系[J].地理科学32(10): 1269-1274.DOI: 10.13249/j.cnki.sgs.2012.10.015 .
null
刘慧斌, 温敏, 何金海, 等, 2012.东北冷涡活动的季节内振荡特征及其影响[J].大气科学36(5): 959-973.
null
刘明歆, 李艳, 吕春艳, 2021.中国冬季两类极端低温事件特征及其大气环流成因分析[J].高原气象40(3): 603-620.DOI: 10.7522/j.issn.1000-0534.2020.00093 .
null
刘芸芸, 丁一汇, 2020.2020年超强梅雨特征及其成因分析[J].气象46(11): 1393-1404.
null
刘子奇, 路瑶, 李艳, 2022.中国大范围持续性极端低温事件年代际变化及其大气环流成因[J].高原气象41(3): 558-571.DOI: 10.7522/j.issn.1000-0534.2021.00031 .
null
路瑶, 李旭, 李艳, 等, 2022.冬季乌拉尔山地区不同生命期阻塞高压的热动量输送特征[J].高原气象41(3): 671-683.DOI: 10. 7522/j.issn.1000-0534.2021.00003 .
null
马宁, 何丽烨, 梁苏洁, 等, 2020.京津冀冬季冷空气过程的低频特征及西伯利亚高压低频变化的影响[J].地理学报75(3): 485-496.
null
马晓青, 丁一汇, 徐海明, 等, 2008.2004/2005年冬季强寒潮事件与大气低频波动关系的研究[J].大气科学32(2): 380-394.
null
孙长, 毛江玉, 吴国雄, 2009.大气季节内振荡对夏季西北太平洋热带气旋群发性的影响[J].大气科学33(5): 950-958.
null
谭赢, 李丽平, 施春华, 等, 2022.中国冬季大范围持续性低温事件低频特征及其与大气低频振荡的联系[J].高原气象41(6): 1410-1424.
null
汤懋苍, 1957.亚洲东部的阻塞形势及其对天气气候的影响[J].气象学报33 (4): 282-293.
null
辛欣, 曾胜兰, 姚素香, 等, 2017.北太平洋冬半年位势高度季节内振荡及其诊断分析[J].大气科学学报40(2): 280-287.DOI: 10.13878/j.cnki.dqkxxb.20150911001 .
null
杨双艳, 李天明, 2020.中高纬大气ISO对夏季鄂海阻高形成和维持的调节作用[J].大气科学学报43(1): 104-115.DOI: 10. 13878/j.cnki.dqkxxb.20191001010 .
null
杨双艳, 武炳义, 周顺武, 等, 2012.大气季节内振荡研究进展[J].气象科技40(6): 938-948.DOI: 10.19517/j.1671-6345. 2012.06.014 .
null
姚菊香, 王盘兴, 李丽平, 2005.季节内振荡研究中两种数字滤波器的性能对比[J].南京气象学院学报28(2): 248-253.DOI: 10.13878/j.cnki.dqkxxb.2005.02.014 .
null
姚素香, 龚克坚, 赵琛, 2016.北半球冬季中纬度位势高度场的季节内振荡[J].气象科学36(5): 622-628.
null
叶笃正, 陶诗言, 朱抱真, 等, 1962.北半球冬季阻塞形势的研究[M].北京: 科学出版社, 1-2.
null
张盛曦, 任雪娟, 2017.阿留申低压低频变化及其相关的瞬变动力学过程分析[J].气象科学38(1): 1-9.
文章导航

/