论文

NCEP CFSv2模式对川渝夏季降水次季节预测技巧评估及预报偏差分析

  • 肖颖 ,
  • 庞轶舒 ,
  • 马振峰 ,
  • 陈权亮 ,
  • 张正杰
展开
  • 1. 成都信息工程大学大气科学学院 高原大气与环境四川省重点实验室,四川 成都 610225
    2. 四川省气候中心,四川 成都 610072

肖颖(1998 -), 女, 山西运城人, 硕士研究生, 主要从事气候预测研究. E-mail:

收稿日期: 2022-08-22

  修回日期: 2023-02-28

  网络出版日期: 2023-11-14

基金资助

国家自然科学基金项目(U20A2097); 中国气象局创新发展专项(CXFZ2021J018); 高原与盆地暴雨旱涝灾害四川省重点实验室科技发展基金项目(SCQXKJQN202214)

Sub-seasonal Forecasting Skills Assessment and Deviation Analysis of CFSv2 for Summer Precipitation in Sichuan and Chongqing

  • Ying XIAO ,
  • Yishu PANG ,
  • Zhenfeng MA ,
  • Quanliang CHEN ,
  • Zhengjie ZHANG
Expand
  • 1. College of Atmospheric Science,Plateau Atmospheric & Environment Laboratory of Sichuan Province,Chengdu University of Information Technology,Chengdu 610225,Sichuan,China
    2. Sichuan Climate Centre,Chengdu 610072,Sichuan,China

Received date: 2022-08-22

  Revised date: 2023-02-28

  Online published: 2023-11-14

摘要

利用NCEP的第二代气候预测系统(CFSv2)提供的2000 -2009年降水场历史回报试验资料以及川渝182个测站的降水实况资料。采用时间相关系数、 均方根误差、 距平相关系数、 距平符号一致率以及PS评分等方法, 对模式在川渝地区夏季降水以及夏季降水异常的次季节尺度预测技巧进行检验, 并进一步分析了模式在概率密度和降水频次方面的预报偏差特征。结果表明: 该模式对川渝夏季降水的可用预报时效为3候左右, 能够较好地模拟出夏季降水的高值中心, 但量级偏大。预报技巧高值区主要位于四川盆地西北部及渝东北地区, 对攀西地区南部及川西高原部分地区也有一定的预报技巧。该模式也能够较好地把握川渝地区夏季降水异常偏少的趋势, 有效预报技巧为2候以内。模式各时效预报与观测的降水概率密度主要集中在10 mm以下量级; 模式预报各量级降水频次与实况相比均偏高得较为明显, 且随着预报时效延长, 偏差越大, 其中偏高最为明显的是小雨频次。

本文引用格式

肖颖 , 庞轶舒 , 马振峰 , 陈权亮 , 张正杰 . NCEP CFSv2模式对川渝夏季降水次季节预测技巧评估及预报偏差分析[J]. 高原气象, 2023 , 42(6) : 1576 -1588 . DOI: 10.7522/j.issn.1000-0534.2023.00007

Abstract

In this paper, the hindcast precipitation fields of the NCEP's second-generation climate prediction system (CFSv2) and the observed precipitation data of 182 meteorological stations in Sichuan and Chongqing from 2000 to 2009 were utilized.Sub-seasonal forecasting ability for summer precipitation and its anomaly in Sichuan-Chongqing region of this model was evaluated by use of Temporal Correlation Coefficient (TCC), Anomaly Correlation Coefficient (ACC), Root Mean Square Error (RMSE), sign coincidence rate (SCR) and PS scores methods.Meanwhile, bias characteristics on probability density and frequency of precipitation was analyzed.The results show that the available forecast lead time for summer precipitation in Sichuan and Chongqing is about 3 pentads, which can simulate the high-value center of summer precipitation well, but the magnitude is too large.The high-value areas of forecasting skills are mainly located in the northwestern Sichuan Basin and northeastern Chongqing, and some forecasting skills are also available for the southern Panxi region and parts of the western Sichuan Plateau.The model can also better grasp the trend of abnormally less precipitation in summer in the Sichuan-Chongqing region, and the effective forecasting skill is within 2 pentads.The precipitation probability densities predicted and observed in each time period of the model are mainly concentrated in the order of magnitude below 10 mm; compared with the actual situation, the precipitation frequency of each magnitude predicted by the model is significantly higher, and with the extension of the forecast time, the deviation is greater, and the most obvious one is the light rain frequency.

参考文献

null
Jiang X W Yang S Li Y Q2013.Seasonal-to-interannual prediction of the Asian summer monsoon in the NCEP climate forecast system version 2[J].Journal of Climate26(3): 3708-3727.DOI: 10.1175/jcli-d-12-00437.1 .
null
Kim H M Webster P J Curry J A2012.Seasonal prediction skill of ECMWF system 4 and NCEP CFSv2 retrospective forecast for the Northern Hemisphere Winter[J].Climate Dynamics, 39: 2957-2973.DOI: 10.1007/s00382-012-1364-6 .
null
Lang Y Ye A Z Gong W, et al, 2014.Evaluating skill of seasonal precipitation and temperature predictions of NCEP CFSv2 forecasts over 17 hydro climatic regions in China[J].Journal of Hydrometeorology15(4): 1546-1559.DOI: 10.1175/jhm-d-13-0208.1 .
null
Liu R F Wang W2015.Multi-week prediction of South-East Asia rainfall variability during boreal summer in CFSv2[J].Climate Dynamics45(1-2), 493-509.
null
Lorenz E1975.The physical basis of climate and climate modelling climatic predictability[M].WMO GARP Publication Series, 16, p.132-136.
null
Luo L F Tang W Lin Z H, et al, 2013.Evaluation of summer temperature and precipitation predictions for NCEP CFSv2 retrospective forecast over China[J].Climate Dynamics41(7): 2213-2230.DOI: 10.1007/s00382-013-1927-1 .
null
Saha S Moorthi S Wu X R, et al, 2014.The NCEP climate forecast system version2[J].Journal of Climate27(6): 2185-2208.
null
Seo K H Wang W Gottschalck J, et al, 2009.Evaluation of MJO forecast skill from several statisticl and dynamical forecast models[J].Journal of Climate, 22, 2372-388.DOI: 10.1175/2008JCLI2421.1 .
null
Vitart F2017.Madden-Julian Qscillation prediction and teleconnections in the S2S database[J].Quarterly Journal of the Royal Meteorological Society143(706): 2210-2220.DOI: 10.1002/qj. 3079 .
null
Wang Q Huang A Zhao Y, et al, 2016.Evaluation of the precipitation seasonal variation over eastern China simulated by BCC_ CSM model with two horizontal resolutions[J].Journal of Geophysical Research: Atmospheres121(14): 8374-8389.DOI: 10.1002/2016jd024959 .
null
White C J Carlsen H Robertson A, et al, 2017.Potential applications of subseasonal-to-seasonal(S2S) predictions[J].Meteorology Atmospheric24(3): 315-325.DOI: 10.1002/met.1654 .
null
陈官军, 魏凤英, 巩远发, 2010.NCEP/CFS模式对东亚夏季延伸预报的检验评估[J].应用气象学报21(6): 659-670.DOI: 10. 11898/1001-7313.20100603 .
null
陈双, 孙继松, 何立富, 2022.四川盆地不同落区的三次强降水过程多尺度特征分析[J].高原气象41(5): 1190-1208.DOI: 10.7522/j.issn.1000-0534.2021.00060 .
null
程智, 徐敏, 段春锋, 2016.CFSv2模式对淮河流域夏季气温降水预测能力的评估[J].暴雨灾害35(4): 351-358.DOI: 10.3969/j.issn.1004-9045.2016.04.007 .
null
范江琳, 曹萍萍, 肖递祥, 等, 2019.西南区域中心模式SWC-WARMS降水偏差分析[J].气象科学39(3): 349-358.DOI: 10.3969/2018jms.0047 .
null
郭渠, 黄安宁, 付志鹏, 等, 2021.北京气候中心次季节-季节预测系统对西南地区夏季降水次季节预报技巧评估及误差订正[J].高原气象40(3): 644-655.DOI: 10.7522/j.issn.1000-0534.2020.00028 .
null
何慧根, 李巧萍, 吴统文, 等, 2014.月动力延伸预测模式业务系统DERF 2.0对中国气温和降水的预测性能评估[J].大气科学38(5): 950-964.DOI: 10.3878/j.issn.1006-9895.1401.13166 .
null
黄小梅, 蒋兴文, 肖丁木, 2016.NCEP CFSv2对中国2015年夏季月尺度降水和环流预报分析[J].高原山地气象研究36(4): 48-58.
null
朗杨, 2015.CFSv2在中国区域的季节干旱可预报性研究[D].北京: 北京师范大学.
null
李成程, 2018.基于BCC_CSM 1.2和CFSv2模式资料对中国夏季温度和降水的候尺度可预报性研究[D].成都: 成都信息工程大学.
null
李清泉, 丁一汇, 张培群, 2004.一个全球海气耦合模式跨季度汛期预测能力的初步检验和评估[J].气象学报62(6): 740-751.
null
李永华, 向波, 卢楚翰, 等, 2016.热带大气季节内振荡对西南地区东部夏季降水的影响及其可能机制[J].大气科学40(2): 437-450.DOI: 10.3878/j.issn.1006-9895.1506.15134 .
null
刘佳, 徐金霞, 马振峰, 等, 2014.第二代月动力延伸预报产品对西南汛期降水的预报检验[J].高原气象33(6): 1468-1479.DOI: 10.7522/j.issn.1000-0534.2013.00168 .
null
刘银峰, 徐海明, 雷正翠, 2009.2006年川渝地区夏季干旱的成因分析[J].大气科学学报32(5): 686-694.
null
马振锋, 彭骏, 高文良, 等, 2006.近40年西南地区的气候变化事实[J].高原气象25(4): 633-642.
null
毛文书, 曾戢, 孙云, 等, 2010.川渝地区夏季降水变化气候特征分析[J].成都信息工程学院学报25(2): 172-178.DOI: 10. 3969/j.issn.1671-1742.2010.02.011
null
庞轶舒, 秦宁生, 刘博, 等, 2021.S2S模式对四川汛期极端降水的预测技巧分析[J].气象47(5): 586-600.DOI: 10.7519/j.issn.1000-0526.2021.05.007 .
null
齐艳军, 容新尧, 2014.次季节-季节预测的应用前景与展望——“次季节-季节预测(S2S)”会议评述[J].气象科技进展4(3): 74-75.
null
任雪娟, 房佳蓓, 杨修群, 2020.我国东部夏季降水季节内振荡与低频大气环流演变特征分析[J].气象科学40(5): 686-696.DOI: 10.3969/2020jms.0068 .
null
尚可政, 秦春明, 王式功, 等, 2011.T213 L31数值预报产品检验[J].安徽农业科学39(6): 3537-3539+3558.DOI: 10.13989/j.cnki.0517-6611.2011.06.012 .
null
覃志年, 胡娅敏, 陈丽娟, 2013.广西夏季降水的多时间尺度特征及影响因子[J].应用气象学报24(5): 565-575.DOI: 10. 11898/1001-7313.20130506 .
null
王安英, 房佳蓓, 杨修群, 2021.北半球夏季热带季节内振荡影响我国夏季降水的规律和预测方法[J].气象科学41(5): 606-616.DOI: 10.12306/2021jms.0051 .
null
王春学, 郑然, 李栋梁, 等, 2020.基于年际增量法的华西秋雨预测模型建立及检验[J].气象科技48(6): 855-861.DOI: 10. 19517/j.1671-6345.20190498 .
null
王连杰, 毛文书, 刘琳, 等, 2015.川渝地区雨季降水特征及海温背景场分析[J].高原山地气象研究35(1): 56-59.DOI: 10. 3969/j.issn.1674-2184.2015.01.009 .
null
王钦, 曾波, 2022.四川盆地两类区域持续性暴雨的环流物理量场特征及成因分析[J].高原气象41(5): 1175-1189.
null
王鑫, 马振峰, 2010.川渝地区主汛期降水的年代际变化与短期气候预测模型的建立[J].高原气象29(3): 595-604.
null
赵崇博, 任宏利, 吴捷 等, 2016.BCC_CSM 1.2次季节-季节(S2S)预报历史回报的综合检验评估报告[C].北京: 国家气候中心.
文章导航

/