收稿日期: 2023-07-14
修回日期: 2023-09-26
网络出版日期: 2023-11-14
基金资助
国网甘肃省电力公司科技项目项目(522708220005)
The Effects of the Tengger Desert Wind and Solar Power Base on Regional Ecological Environment
Received date: 2023-07-14
Revised date: 2023-09-26
Online published: 2023-11-14
沙漠地区风光热资源丰富, 已建设的风光热基地对区域生态环境的影响机制尚不明确。开展区域风光热基地建设的生态环境效应研究对指导区域清洁能源开发与促进社会经济发展具有重要意义。本研究以腾格里沙漠为研究区, 基于谷歌地球引擎云平台(Google Earth Engine, GEE)并结合2000年、 2022年研究区Landsat 8遥感影像, 采用土地利用动态度、 土地利用转移矩阵、 生态环境质量指数、 景观格局指数、 地理加权回归模型等方法对沙区风光热基地建设前后生态环境的效应进行分析。结果表明: (1)沙区土地利用空间分布时空异质性显著, 主要土地利用类型为沙地、 低覆盖草地及戈壁。沙地面积占研究区总面积的69.10%~72.72%。2000 -2022年, 风光热基地建设前后沙区土地利用类型变化剧烈区主要分布在沙区东南及西南边缘等。(2)近22年, 土地利用动态度最高的是工矿建设用地, 达到0.11%。沙地转移为工矿建设用地, 而工矿建设用地中80%为风光热基地面积, 沙地成为风光热基地的重要转移源。(3)区域生态环境质量指数(Ecological Environment Quality Index, EEQI)高值区主要集中在石羊河中下游区域及沙漠西南、 东南边缘区。风光热基地集中区域EEQI由水平值提高到0.25~0.87。(4)风光热基地建设后区域内景观要素分散程度降低、 破碎度提高, 景观空间结构更复杂, 区域景观的多样性与异质性增强。此外, 风光热基地建设后沙区回归系数总体高于2.5, 一定程度上提高了区域生态环境质量指数, 加强了土地利用与生态环境质量的相关性。因此, 风光热基地的建设带来的土地利用的良性变化有利于促进沙区生态环境质量与景观格局的改善。
彭生江 , 薛远天 , 孙亚璐 , 杨晨来 , 苏迎庆 , 朱猛 . 腾格里沙漠风光热基地对区域生态环境的效应分析[J]. 高原气象, 2023 , 42(6) : 1615 -1624 . DOI: 10.7522/j.issn.1000-0534.2023.00078
The desert region possesses abundant scenic and thermal resources, yet the causal relationships between the constructed scenery and the heat infrastructure and their impact on the regional ecological environment remain inadequately understood in terms of mechanistic understanding.Conducting research on the ecological environmental impact of regional wind-solar-thermal infrastructure development holds great significance in guiding the advancement of clean energy and promoting socioeconomic growth within the region.This study focuses on the Tengger Desert as its research area.Using the Google Earth Engine cloud platform (GEE) and Landsat 8 remote sensing images obtained in 2000 and 2022, the investigation employs diverse analytical methods such as land use dynamic degree, land use transfer matrix, ecological environment quality index (EEQI), landscape pattern index, and geographically weighted regression model (GWR) to evaluate the impact of wind-solar-thermal infrastructure development on the regional ecological environment.The findings indicate that: (1) The land use/land cover (LULC) in the sandy area exhibited apparent spatial and temporal heterogeneity, with sandy land, low-coverage grassland, and Gobi being the main land use types.Notably, the proportion of sandy land accounted for 69.10% to 72.72% of the total study area.In terms of the changes in land use types before and after the construction of the wind and solar power base from 2000 to 2022, the regions with substantial alterations were primarily distributed at the southeast and southwest edges of the sandy area.(2) Over the course of the past 22 years, the highest degree of land use dynamics was observed in industrial and mining construction land, with a notable percentage of 0.11%.A significant portion of sandy land has been transformed into industrial and mining construction land, where approximately 80% of this land was designated for wind and solar power base development.Consequently, sandy land has emerged as a pivotal contributor to the expansion of wind-solar-thermal infrastructure.(3) The regions with the highest EEQI values primarily encompass the middle and lower reaches of the Shiyang River, as well as the southwest and southeast edges of the desert.The concentrated area of the wind and solar power base displayed an increase in EEQI ranging from 0.25 to 0.87, denoting a considerable improvement in ecological conditions.(4) The construction of the wind and solar power base results in a reduction in the dispersion degree of landscape elements in the region, an enhancement in the fragmentation degree, and a more complex spatial structure.Additionally, the diversity and heterogeneity of the regional landscape were improved.Moreover, following the construction of the wind and solar power base, there was a consistent increase in the regression coefficient of the sandy area, exceeding 2.5 on average.This improvement contributes to enhancing the regional EEQI and further strengthens the correlation between LULC and ecological conditions.As a result, the beneficial changes in land use that accompany the construction of the wind and solar power base serve to promote the improvement of ecological environment quality and landscape patterns in sandy areas.
null | |
null | |
null | |
null | |
null | 安慧昱, 2021.新能源替代化石能源的机制及效应研究[D].北京: 中国矿业大学(北京).DOI: 10.27624/d.cnki.gzkbu.2021.000026 . |
null | 曾燕, 王珂清, 谢志清, 等, 2012.江苏省太阳能资源评估[J].大气科学学报, 35(6): 658-663.DOI: 10.13878/j.cnki.dqkxxb. 2012. 06.001 . |
null | 常兆丰, 刘世增, 王祺, 等, 2018.沙漠、 戈壁光伏产业防沙治沙的生态功能——以甘肃河西走廊为例[J].生态经济, 34(8): 199-202, 208.DOI: 1671-4407(2018)08-199-04 . |
null | 邓铭江, 明波, 李研, 等, 2022.“双碳”目标下新疆能源系统绿色转型路径[J].自然资源学报, 37(5): 1107-1122.DOI: 10. 31497/zrzyxb.20220501 . |
null | 高燕, 2014.云蒙湖流域土地利用变化的尺度效应研究[D].济南: 山东师范大学. |
null | 胡锋, 安裕伦, 赵海兵, 2016.基于土地利用转型视角的“亚喀斯特”区域生态环境效应研究--以黔中部分地区为例[J].地球与环境, 44(4): 447-454.DOI: 10.14050/j.cnki.1672-9250. 2016.04.009 . |
null | 胡雅杰, 闫业庆, 孙继成, 等, 2013.酒泉风电基地对区域生态环境的影响[J].甘肃农业大学学报, 48(2): 92-98.DOI: 10. 13432/j.cnki.jgsau.2013.02.006 . |
null | 胡亚男, 李兴华, 郝玉珠, 2019.内蒙古太阳能资源时空分布特征与评估研究[J].干旱区资源与环境, 33(12): 132-138.DOI: 10.13448/j.cnki.jalre.2019.357 . |
null | 靳晶新, 叶林, 陆佳政, 等, 2022.融合多维气象信息的风能资源评估方法[J].高电压技术, 48(2): 477-487.DOI: 10.13336/j. 1003-6520.hve.20201827 . |
null | |
null | 李得禄, 马全林, 张锦春, 等, 2020.腾格里沙漠植被特征[J].中国沙漠, 40(4): 223-233.DOI: 10.7522/j.issn.1000-694X. 2020.00053 . |
null | 李泽椿, 朱蓉, 何晓凤, 等, 2007.风能资源评估技术方法研究[J].气象学报, 65(5): 708-717.DOI: 10.3321/j.issn: 0577-6619.2007.05.006 . |
null | 刘淳, 任立清, 李学军, 等, 2021.1990-2019年中国北方沙区太阳能资源评估[J].高原气象, 40(5): 1213-1223.DOI: 10.7522/j.issn.1000-0534.2021.00058 . |
null | |
null | 吕清刚, 柴祯, 2022.“双碳”目标下的化石能源高效清洁利用[J].中国科学院院刊, 37(4): 541-548.DOI: 10.16418/j.issn. 1000-3045.20220328001 . |
null | 司建华, 冯起, 席海洋, 等, 2019.关于新时期中国西部发展沙产业的思考[J].中国沙漠, 39(1): 1-6.DOI: 10.7522/j.issn. 1000-694X.2019.00014 . |
null | |
null | 陶苏林, 戚易明, 申双和, 等, 2016.中国1981-2014年太阳总辐射的时空变化[J].干旱区资源与环境, 30(11): 143-147.DOI: 10.13448/j.cnki.jalre.2016.362 . |
null | 王国法, 刘合, 王丹丹, 等, 2023.新形势下我国能源高质量发展与能源安全[J].中国科学院院刊, 38(1): 23-37.DOI: 10. 16418/j.issn.1000-3045.20221028001 . |
null | |
null | 王科, 黄晶, 2023.国内外太阳能资源评估方法研究现状和展望[J].气候变化研究进展, 19(2): 160-172.DOI: 10.12006/j.issn.1673-1719.2022.096 . |
null | 王朋冲, 于强, 裴燕如, 等, 2020.翁牛特旗景观格局尺度效应分析[J].农业机械学报, 51(5): 223-231, 181.DOI: 10.6041/j.issn.1000-1298.2020.05.025 . |
null | 王祺, 尚雯, 常兆丰, 等, 2020.沙漠戈壁光伏产业太阳能利用率研究--以甘肃河西走廊为例[J].太阳能学报, 41(11): 126-134.DOI: 10.19912/j.0254-0096.2020.11.017 . |
null | |
null | 肖建华, 司建华, 刘淳, 等, 2021.沙漠能源生态圈概念、 内涵及发展模式[J].中国沙漠, 41(5): 11-20.DOI: 10.7522/j.issn. 1000-694X.2021.00038 . |
null | |
null | 许光清, 张文丹, 刘海博, 2023.中国居民能源消费的间接回弹效应分析及双碳目标下的政策启示[J].自然资源学报, 38(3): 658-674.DOI: 10.31497/zrzyxb.20230307 . |
null | 薛冬萍, 薛杰, 戴恒, 等, 2021.和田绿洲景观破碎化特征及驱动因素[J].中国沙漠, 41(4): 59-69.DOI: 10.7522/j.issn.1000-694X.2021.00019 . |
null | 杨馥宁, 吕萍, 马芳, 等, 2023.腾格里沙漠南部格状沙丘的形态演变及移动特征[J].中国沙漠, 43(1): 107-115.DOI: 10.7522/j.issn.1000-694X.2022.00106 . |
null | 姚玉璧, 郑绍忠, 杨扬, 等, 2022.中国太阳能资源评估及其利用效率研究进展与展望[J].太阳能学报, 43(10): 524-535.DOI: 10.19912/j.0254-0096.tynxb.2022-0141 . |
null | 袁淑杰, 李晓虹, 张益炜, 等, 2013.河北省水平面太阳总辐射时空分布及太阳能资源评估研究[J].东北农业大学学报, 44(11), 50-55.DOI: 10.19720/j.cnki.issn.1005-9369.2013.11.010 . |
null | 苑韶峰, 唐奕钰, 申屠楚宁, 2019.土地利用转型时空演变及其生态环境效应——基于长江经济带127个地级市的实证研究[J].经济地理, 39(9): 174-181.DOI: 10.15957/j.cnki.jjdl. 2019.09.021 . |
null | 张德军, 祝好, 杨世琦, 等, 2023.基于地理加权回归模型遥感近地表气温估算[J].遥感技术与应用, 38(2): 508-517.DOI: 10.11873/j.issn.1004-0323.2023.2.0508 . |
null | 张乾, 辛晓洲, 张海龙, 等, 2018.基于遥感数据和多因子评价的中国地区建设光伏电站的适宜性分析[J].地球信息科学学报, 20(1): 119-127.DOI: 10.12082/dqxxkx.2018.170393 . |
null | 郑崇伟, 李崇银, 杨艳, 等, 2016.巴基斯坦瓜达尔港的风能资源评估[J].厦门大学学报(自然科学版), 55(2): 210-215.DOI: 10.6043/j.issn.0438-0479.2016.02.011 . |
null | |
null | 朱蓉, 徐红, 龚强, 等, 2023.中国风能开发利用的风环境区划[J].太阳能学报, 44(3): 55-66.DOI: 10.19912/j.0254-0096.tynxb.2021-1197 . |
/
〈 |
|
〉 |