论文

ECMWF模式对我国西南环横断山区冬季近地面2 m温度的预报评估

  • 吴诗梅 ,
  • 唐娜 ,
  • 梁雨琪 ,
  • 欧旭阳 ,
  • 李海杰 ,
  • 陈昊明
展开
  • 1. 云南大学地球科学学院,云南 昆明 650500
    2. 中国气象科学研究院,北京 100811
    3. 中国气象局横断山区(低纬高原)灾害性天气研究中心,云南 昆明 650500

吴诗梅(2001 -), 女, 广西玉林, 本科生, 主要研究评估模式、 气候变化等. E-mail:

收稿日期: 2022-08-22

  修回日期: 2023-06-10

  网络出版日期: 2023-06-10

基金资助

国家自然科学基金项目(42075154); 中国气象科学研究院科技发展基金项目(2023KJ028); 国家自然科学基金青年科学基金项目(42005122)

Evaluation of Winter Near-surface 2 m Temperature around the Hengduan Mountains in Southwest China Simulated by ECMWF

  • Shimei WU ,
  • Na TANG ,
  • Yuqi LIANG ,
  • Xuyang OU ,
  • Haijie LI ,
  • Haoming CHEN
Expand
  • 1. School of Earth Sciences,Yunnan University,Kunming 650500,Yunnan,China
    2. Chinese academy of meteorological sciences,Beijing 100811,China
    3. Center for Disastrous Weather over Hengduan Mountains & Low Latitude Plateau,CMA,Kunming 650500,Yunnan,China

Received date: 2022-08-22

  Revised date: 2023-06-10

  Online published: 2023-06-10

摘要

从冬季平均温度、 温度日变化及日较差等方面入手, 基于2021年CLDAS逐小时产品评估了ECMWF全球高分辨率确定性数值预报产品对我国西南环横断山区复杂地形区近地面2 m温度的预报能力, 并通过区分高地形区(川西高原)和低地形区(四川盆地南部), 对比了不同地形区近地面2 m温度预报的偏差特征。结果表明: (1)ECMWF模式可合理预报我国西南环横断山区冬季平均2 m温度的空间分布特征, 但偏差分布与地形高度有关, 随着地形高度的增加, 预报偏差呈增大趋势。(2)ECMWF模式很好再现了西南环横断山区冬季温度的日变化特征, 峰值时刻出现在14:00(北京时); 各时刻温度的预报偏差在不同地形高度存在差异, 川西高原和横断山区的最大负偏差出现在下午, 四川盆地南部的最大负偏差出现在早晨。同时, 高地形区各时刻的预报偏差均高于低地形区。(3)ECMWF模式对日内各时刻不同地形处2 m温度的空间分布均有合理预报, 但偏差存在日变化特征。特别是在横断山区高地形区, 其在各时刻有不同的冷暖偏差特征。(4)在环横断山区温度日较差预报偏差较大的区域(大致为昆明准静止锋线发生频次较高的区域), 模式对于温度日较差较大的日数, 其2 m温度的预报偏差要大于日较差较小的日数, 且在该区域内, 温度日较差的预报偏差相对不稳定。

本文引用格式

吴诗梅 , 唐娜 , 梁雨琪 , 欧旭阳 , 李海杰 , 陈昊明 . ECMWF模式对我国西南环横断山区冬季近地面2 m温度的预报评估[J]. 高原气象, 2024 , 43(1) : 88 -98 . DOI: 10.7522/j.issn.1000-0534.2023.00049

Abstract

Based on the hourly product of CLDAS (CMA Land Data Assimilation System) in 2021, this study is to evaluate the prediction capacity of the global high-resolution deterministic numerical prediction product ECMWF (European Center for Medium Weather Forecasting) for winter mean near-surface 2 m temperature of complex terrain region around the Hengduan mountains in southwest China by starting from winter average temperature, daily variation, and diurnal temperature range.And this study compares the temperature deviation characteristics of near-surface 2 m temperature in different topographic regions by distinguishing between high terrain region (the Western Sichuan Plateau) and low terrain region (the southern Sichuan Basin).The results show that: (1) The ECMWF model can reasonably predict the spatial distribution characteristics of the winter mean near-surface 2 m temperature around the Hengduan mountains in southwest China, but the deviation distribution is related to the terrain height.With the increase of the terrain height, the prediction deviation tends to increase.(2) The ECMWF model well reproduces the daily variation characteristics of winter mean near-surface 2 m temperature around the Hengduan mountains in southwest China, with the peak time appearing at 14:00 (Beijing Time).The prediction deviation of temperature at various times varies at different terrain heights.The maximum negative deviation of the western Sichuan Plateau and the Hengduan mountain regions occurs in the afternoon, while the maximum negative deviation of the south Sichuan Basin occurs in the morning.At the same time, the prediction deviation at each moment in high terrain areas is greater than the prediction deviation at each moment in low terrain areas.(3) The ECMWF model can reasonably predict for the spatial distribution of winter mean near-surface 2 m temperature over different terrain at various times during the day, but the deviations have diurnal variation characteristics.Especially in the high terrain region of the Hengduan mountain regions, there are different characteristics of cold and warm deviations at various times.(4) The area with large forecast bias of diurnal temperature range is generally the area with frequent Quasi-stationary front activities in Kunming.For the days (A total of 90 days, from December 1, 2021 to February 28, 2022) with large diurnal temperature range, the prediction deviation of winter mean near-surface 2 m temperature in this area is greater than the days with small diurnal temperature range.What’s more, the prediction deviation of diurnal temperature range is relatively unstable in the area with large forecast bias of diurnal temperature range.

参考文献

null
Huang, X L, Han S Shi C X2021.Multiscale assessments of three reanalysis temperature data systems over China[J].Agriculture11(12): 1292.
null
Jia Z K Zheng Z H Zhu Y F, et al, 2022.Predictable patterns of midsummer surface air temperature over Eastern China and their corresponding signal sources in ECMWF subseasonal forecasts[J].Climate Dynamics60(9/10): 3005-3022.DOI: https: //doi.org/10.1007/s00382-022-06481-0 .
null
Nie Y B Sun J Q2020.Evaluation of high-resolution precipitation products over southwest China[J].Journal of Hydrometeorology21(11): 2691-2712.DOI: https: //doi.org/10.1175/JHM-D-20-0045.1 .
null
Wu J T Li J Zhu Z W, et al, 2023.Factors determining the subseasonal prediction skill of summer extreme rainfall over southern China[J].Climate Dynamics, 60: 443-460.DOI: https: //doi.org/10.1007/s00382-022-06326-w .
null
Yu E T Ma J H Sun J Q2022.Developing a climate prediction system over southwest China using the 8-km weather research and forecasting (WRF) model: system design, model calibration, and performance evaluation[J].Weather and Forecasting37(9): 2691-2712.DOI: https: //doi.org/10.1175/WAF-D-21-0188.1 .
null
Yu R C Li J Jia P Q2019.Development of operational weather forecasting shaped by the “Triple-In” properties of numerical models[J].WMO Bulletin68(2): 56-62.
null
Zhou Y Yang B Chen H S, et al, 2019.Effects of the Madden-Julian oscillation on 2-m air temperature prediction over China during boreal winter in the S2S database[J].Climate Dynamics, 52: 6671-6689.DOI: https: //doi.org/10.1007/s00382-018-4538-z .
null
蔡宏珂, 郑嘉雯, 毛雅琴, 等, 2022.六个气候系统模式对西南地区2 m温度的预报检验分析[J].高原山地气象研究42(1): 77-84.
null
Cai H K Zheng J W Mao Y Q, et al, 2022.Seasonal prediction performance of temperature in Southwest China by six climate prediction models[J].Plateau and Mountain Meteorology Research42(1): 77-84.
null
崔茂常, 朱海, 白学志, 等, 2000.中国日降雨量变化特征分析[J].大气科学24(4): 519-526.DOI: 10.3878/j.issn.1006-9895.2000.04.08.Cui M C
null
Zhu H Bai X Z, et al, 2000.An analysis of daily rainfall variability in China[J].Chinese Journal of Atmospheric Sciences24(4): 519-526.DOI: 10.3878/j.issn.1006-9895.2000.04.08 .
null
董颜, 王东海, 卞赟, 2018.西南地区持续性强降水的多模式可预报性评估[J].中国科技论文13(9): 1078-1086.
null
Dong Y Wang D H Bian Y2018.Multimodel predictability assessment of persistent heavy rainfall in Southwest China[J].China Science Paper13(9): 1078-1086.
null
杜小玲, 彭芳, 武文辉, 2010.贵州冻雨频发地带分布特征及成因分析[J].气象36(5): 92-97.
null
Du X L Peng F Wu W H2010.Distribution and cause on frequent freezing rain zone in Guizhou[J].Meteorological Monthly36(5): 92-97.
null
符娇兰, 2016.基于CRA空间检验技术的西南地区东部强降水EC模式预报误差分析[J].气象42(12): 1456-1464.
null
Fu J L2016.The ECMWF model precipitation systematic error in the east of southwest China based on the contiguous rain area method for spatial forecast verification[J].Meteorological Monthly42(12): 1456-1464.
null
何光碧, 张利红, 屠妮妮, 2014.区域中尺度模式对西南地区一次强降水过程的预报分析[J].高原山地气象研究34(2): 1-7.
null
He G B Zhang L H Tu N N2014.Analyses on a heavy rainfall process prediction of regional numerical models[J].Plateau and Mountain Meteorology Research34(2): 1-7.
null
黄子立, 吴小飞, 毛江玉, 2021.CMIP6 模式水平分辨率对模拟我国西南地区夏季极端降水的影响评估[J].高原气象40(6): 1470-1483.DOI: 10.7522/j.issn.1000-0534.2021.zk010.Huang Z L
null
Wu X F Mao J Y2021.An evaluation for impacts of the horizontal resolution of CMIP6 models on simulating extreme summer rainfall over southwest China[J].Plateau Meteorology40(6): 1470-1483.DOI: 10.7522/j.issn.1000-0534. 2021.zk010 .
null
李纯, 姜彤, 王艳君, 缪丽娟, 等, 2022.基于CMIP6模式的黄河上游地区未来气温模拟预估[J].冰川冻土44(1): 171-178.
null
Li C Jiang T Wang Y J Miao L J, et al, 2022.Simulation and estimation of future air temperature in upper basin of the Yellow River based on CMIP6 models[J].Journal of Glaciology and Geocryology44(1): 171-178.
null
师春香, 潘旸, 谷军霞, 等, 2019.多源气象数据融合格点实况产品研制进展[J].气象学报77(4): 774-783.
null
Shi C X Pan Y Gu J X, et al, 2019.A review of multi-source meteorological data fusion products[J].Acta Meteorologica Sinica77(4): 774-783.
null
孙帅, 师春香, 梁晓, 等, 2017.不同陆面模式对我国地表温度模拟的适用性评估[J].应用气象学报28(6): 99-111.
null
Sun S Shi C X Liang X, et al, 2017.Assessment of ground temperature simulation in China by different Land Surface Models based on station observations[J].Journal of Applied Meteorological Science28(6): 99-111.
null
瓦力江?瓦黑提, 纪忠萍, 黄晓莹, 等, 2022.ECMWF模式对2020年冬季广东气温预报的时空检验[J].广东气象44(1): 52-54.
null
Walijiang W Ji Z P Huang X Y, et al, 2022.Spatiotemporal test of temperature forecast in Guangdong in winter of 2020 by ECMWF model[J].Guangdong Meteorology44(1): 52-54.
null
汪冬冬, 方艳莹, 申华羽, 等, 2023.浙江省梅雨期降水日变化及ECMWF预报能力评估[J/OL].水利水电技术(中英文): 1-21[2023-03-06].
null
Fang Y Y Shen H Y, et al, 2023.Diurnal change of rainfall during Meiyu period in Zhejiang Province and assessment on prediction capacity of ECMWF[J/OL].Water Resources and Hydropower Engineering, 1-21.[2023-03-06].
null
伍清, 蒋兴文, 谢洁, 2017.CMIP5 模式对西南地区气温的模拟能力评估[J].高原气象36(2): 358-370.DOI: 10.7522/j.issn.1000-0534.2016.00046.Wu Q
null
Jiang X W Xie J2017.Evaluation of surface air temperature in southwestern China simulated by the CM IP5 models[J].Plateau Meteorology36(2): 358-370.DOI: 10.7522/j.issn.1000-0534.2016.00046 .
null
夏阳, 严小冬, 刘芷含, 等, 2023.中国西南贵州地区冬季凝冻日数的气候特征及其异常成因[J].高原气象42(1): 173-185.DOI: 10.7522/j.issn.1000-0534.2022.00028.Xia Y
null
Yan X D Liu Z H, et al, 2023.Climatic characteristics of winter freezing days in Guizhou in southwest China and their anomalous causes[J].Plateau Meteorology42(1): 173-185.DOI: 10. 7522/j.issn.1000-0534.2022.00028 .
null
向楠, 巩远发, 李卓敏, 2023.青藏高原东部和西南地区低温冰冻雨雪事件的时空变化特征[J].高原气象42(1): 13-24.DOI: 10.7522/j.issn.1000-0534.2022.00034.Xiang N
null
Gong Y F Li Z M2023.Temporal and spatial variation characteristics of low temperature freezing rain and snow events in the eastern Qinghai-Xizang Plateau and southwestern China[J].Plateau Meteorology42(1): 13-24.DOI: 10.7522/j.issn.1000-0534. 2022.00034 .
null
肖玉华, 康岚, 徐琳娜, 等, 2013.西南区域中尺度数值模式预报性能及其与天气过程关系初探[J].气象39(10): 1257-1264.DOI: 10.7519/j.issn.1000-0526.2013.10.003.Xiao Y H
null
Kang L Xu L N, et al, 2013.Discussion on relationship between prediction performance of mesoscale numerical model and weather process in southwest China[J].Meteorological Monthly39(10): 1257-1264.DOI: 10.7519/j.issn.1000-0526. 2013. 10.003 .
null
徐寒列, 李建平, 冯娟, 2013.逐对剔除的相关系数检验方法及应用[J].气象学报71(5): 901-912.
null
Xu H L Li J P Feng J2013.The pair-wise deletion correlation coefficient testing method and its applications[J].Acta Meteorologica Sinica71(5): 901-912.
null
杨明鑫, 肖天贵, 李勇, 等, 2022.CMIP6模式对我国西南地区夏季气候变化的模拟和预估[J].高原气象41(6): 1557-1571.DOI: 10.7522/j.issn.1000-0534.2021.00119.Yang M X
null
Xiao T G Li Y, et al, 2022.Evaluation and projection of climate change in southwest China using CMIP6 models[J].Plateau Meteorology41(6): 1557-1571.DOI: 10.7522/j.issn.1000-0534.2021.00119 .
null
宇如聪, 李建, 原韦华, 2021.云贵高原锋线的动态特征[J].气象学报79(6): 889-901 DOI: 10.11676/qxxb2021.064.Yu R C
null
Li J Yuan W H2021.The moving characteristics of frontal lines on the Yunnan-Guizhou Plateau[J].Acta Meteorologica Sinica79(6): 889-901 DOI: 10.11676/qxxb2021.064 .
null
袁媛, 申乐琳, 晏红明, 2022.年代际尺度的拉尼娜事件对中国西南地区冬季气温的影响[J].地球物理学报65(1): 169-185.
null
Yuan Y Shen L L Yan H M2022.Influence of La Ni?a on the winter temperature in southwest China on the interdecadal timescale[J].Chinese journal of geophysics65(1): 169-185.
null
张超, 孙绩华, 巩远发, 等, 2018.ECMWF高分辨率网格对云南区域降水预报性能的定量检验[J].成都信息工程大学学报33 (6): 688-703.DOI: 10.16836/j.cnki.jcuit.2018.06.015.Zhang C
null
Sun J H Gong Y F, et al, 2018.Quantitative verification of precipitation forecasts performance in Yunnan by ECMWF high resolution grid[J].Journal of Chengdu university of information technology33 (6): 688-703.DOI: 10.16836/j.cnki.jcuit.2018.06.015 .
null
张武龙, 张井勇, 范广洲, 2015, CMIP5 模式对我国西南地区干湿季降水的模拟和预估[J].大气科学39(3): 559-570.
null
Zhang W L Zhang J Y Fan G Z2015.Evaluation and projection of dry-and wet-season precipitation in southwestern China using CMIP5 models[J].Chinese Journal of Atmospheric Sciences39(3): 559-570.
文章导航

/