ECMWF模式对我国西南环横断山区冬季近地面2 m温度的预报评估
收稿日期: 2022-08-22
修回日期: 2023-06-10
网络出版日期: 2023-06-10
基金资助
国家自然科学基金项目(42075154); 中国气象科学研究院科技发展基金项目(2023KJ028); 国家自然科学基金青年科学基金项目(42005122)
Evaluation of Winter Near-surface 2 m Temperature around the Hengduan Mountains in Southwest China Simulated by ECMWF
Received date: 2022-08-22
Revised date: 2023-06-10
Online published: 2023-06-10
从冬季平均温度、 温度日变化及日较差等方面入手, 基于2021年CLDAS逐小时产品评估了ECMWF全球高分辨率确定性数值预报产品对我国西南环横断山区复杂地形区近地面2 m温度的预报能力, 并通过区分高地形区(川西高原)和低地形区(四川盆地南部), 对比了不同地形区近地面2 m温度预报的偏差特征。结果表明: (1)ECMWF模式可合理预报我国西南环横断山区冬季平均2 m温度的空间分布特征, 但偏差分布与地形高度有关, 随着地形高度的增加, 预报偏差呈增大趋势。(2)ECMWF模式很好再现了西南环横断山区冬季温度的日变化特征, 峰值时刻出现在14:00(北京时); 各时刻温度的预报偏差在不同地形高度存在差异, 川西高原和横断山区的最大负偏差出现在下午, 四川盆地南部的最大负偏差出现在早晨。同时, 高地形区各时刻的预报偏差均高于低地形区。(3)ECMWF模式对日内各时刻不同地形处2 m温度的空间分布均有合理预报, 但偏差存在日变化特征。特别是在横断山区高地形区, 其在各时刻有不同的冷暖偏差特征。(4)在环横断山区温度日较差预报偏差较大的区域(大致为昆明准静止锋线发生频次较高的区域), 模式对于温度日较差较大的日数, 其2 m温度的预报偏差要大于日较差较小的日数, 且在该区域内, 温度日较差的预报偏差相对不稳定。
吴诗梅 , 唐娜 , 梁雨琪 , 欧旭阳 , 李海杰 , 陈昊明 . ECMWF模式对我国西南环横断山区冬季近地面2 m温度的预报评估[J]. 高原气象, 2024 , 43(1) : 88 -98 . DOI: 10.7522/j.issn.1000-0534.2023.00049
Based on the hourly product of CLDAS (CMA Land Data Assimilation System) in 2021, this study is to evaluate the prediction capacity of the global high-resolution deterministic numerical prediction product ECMWF (European Center for Medium Weather Forecasting) for winter mean near-surface 2 m temperature of complex terrain region around the Hengduan mountains in southwest China by starting from winter average temperature, daily variation, and diurnal temperature range.And this study compares the temperature deviation characteristics of near-surface 2 m temperature in different topographic regions by distinguishing between high terrain region (the Western Sichuan Plateau) and low terrain region (the southern Sichuan Basin).The results show that: (1) The ECMWF model can reasonably predict the spatial distribution characteristics of the winter mean near-surface 2 m temperature around the Hengduan mountains in southwest China, but the deviation distribution is related to the terrain height.With the increase of the terrain height, the prediction deviation tends to increase.(2) The ECMWF model well reproduces the daily variation characteristics of winter mean near-surface 2 m temperature around the Hengduan mountains in southwest China, with the peak time appearing at 14:00 (Beijing Time).The prediction deviation of temperature at various times varies at different terrain heights.The maximum negative deviation of the western Sichuan Plateau and the Hengduan mountain regions occurs in the afternoon, while the maximum negative deviation of the south Sichuan Basin occurs in the morning.At the same time, the prediction deviation at each moment in high terrain areas is greater than the prediction deviation at each moment in low terrain areas.(3) The ECMWF model can reasonably predict for the spatial distribution of winter mean near-surface 2 m temperature over different terrain at various times during the day, but the deviations have diurnal variation characteristics.Especially in the high terrain region of the Hengduan mountain regions, there are different characteristics of cold and warm deviations at various times.(4) The area with large forecast bias of diurnal temperature range is generally the area with frequent Quasi-stationary front activities in Kunming.For the days (A total of 90 days, from December 1, 2021 to February 28, 2022) with large diurnal temperature range, the prediction deviation of winter mean near-surface 2 m temperature in this area is greater than the days with small diurnal temperature range.What’s more, the prediction deviation of diurnal temperature range is relatively unstable in the area with large forecast bias of diurnal temperature range.
null | Huang, X L, |
null | |
null | |
null | |
null | |
null | |
null | |
null | 蔡宏珂, 郑嘉雯, 毛雅琴, 等, 2022.六个气候系统模式对西南地区2 m温度的预报检验分析[J].高原山地气象研究, 42(1): 77-84. |
null | |
null | 崔茂常, 朱海, 白学志, 等, 2000.中国日降雨量变化特征分析[J].大气科学, 24(4): 519-526.DOI: 10.3878/j.issn.1006-9895.2000.04.08.Cui M C , |
null | |
null | 董颜, 王东海, 卞赟, 2018.西南地区持续性强降水的多模式可预报性评估[J].中国科技论文, 13(9): 1078-1086. |
null | |
null | 杜小玲, 彭芳, 武文辉, 2010.贵州冻雨频发地带分布特征及成因分析[J].气象, 36(5): 92-97. |
null | |
null | 符娇兰, 2016.基于CRA空间检验技术的西南地区东部强降水EC模式预报误差分析[J].气象, 42(12): 1456-1464. |
null | |
null | 何光碧, 张利红, 屠妮妮, 2014.区域中尺度模式对西南地区一次强降水过程的预报分析[J].高原山地气象研究, 34(2): 1-7. |
null | |
null | 黄子立, 吴小飞, 毛江玉, 2021.CMIP6 模式水平分辨率对模拟我国西南地区夏季极端降水的影响评估[J].高原气象, 40(6): 1470-1483.DOI: 10.7522/j.issn.1000-0534.2021.zk010.Huang Z L , |
null | |
null | 李纯, 姜彤, 王艳君, 缪丽娟, 等, 2022.基于CMIP6模式的黄河上游地区未来气温模拟预估[J].冰川冻土, 44(1): 171-178. |
null | |
null | 师春香, 潘旸, 谷军霞, 等, 2019.多源气象数据融合格点实况产品研制进展[J].气象学报, 77(4): 774-783. |
null | |
null | 孙帅, 师春香, 梁晓, 等, 2017.不同陆面模式对我国地表温度模拟的适用性评估[J].应用气象学报, 28(6): 99-111. |
null | |
null | 瓦力江?瓦黑提, 纪忠萍, 黄晓莹, 等, 2022.ECMWF模式对2020年冬季广东气温预报的时空检验[J].广东气象, 44(1): 52-54. |
null | |
null | 汪冬冬, 方艳莹, 申华羽, 等, 2023.浙江省梅雨期降水日变化及ECMWF预报能力评估[J/OL].水利水电技术(中英文): 1-21[2023-03-06]. |
null | |
null | 伍清, 蒋兴文, 谢洁, 2017.CMIP5 模式对西南地区气温的模拟能力评估[J].高原气象, 36(2): 358-370.DOI: 10.7522/j.issn.1000-0534.2016.00046.Wu Q , |
null | |
null | 夏阳, 严小冬, 刘芷含, 等, 2023.中国西南贵州地区冬季凝冻日数的气候特征及其异常成因[J].高原气象, 42(1): 173-185.DOI: 10.7522/j.issn.1000-0534.2022.00028.Xia Y , |
null | |
null | 向楠, 巩远发, 李卓敏, 2023.青藏高原东部和西南地区低温冰冻雨雪事件的时空变化特征[J].高原气象, 42(1): 13-24.DOI: 10.7522/j.issn.1000-0534.2022.00034.Xiang N , |
null | |
null | 肖玉华, 康岚, 徐琳娜, 等, 2013.西南区域中尺度数值模式预报性能及其与天气过程关系初探[J].气象, 39(10): 1257-1264.DOI: 10.7519/j.issn.1000-0526.2013.10.003.Xiao Y H , |
null | |
null | 徐寒列, 李建平, 冯娟, 2013.逐对剔除的相关系数检验方法及应用[J].气象学报, 71(5): 901-912. |
null | |
null | 杨明鑫, 肖天贵, 李勇, 等, 2022.CMIP6模式对我国西南地区夏季气候变化的模拟和预估[J].高原气象, 41(6): 1557-1571.DOI: 10.7522/j.issn.1000-0534.2021.00119.Yang M X , |
null | |
null | |
null | |
null | 袁媛, 申乐琳, 晏红明, 2022.年代际尺度的拉尼娜事件对中国西南地区冬季气温的影响[J].地球物理学报, 65(1): 169-185. |
null | |
null | 张超, 孙绩华, 巩远发, 等, 2018.ECMWF高分辨率网格对云南区域降水预报性能的定量检验[J].成都信息工程大学学报, 33 (6): 688-703.DOI: 10.16836/j.cnki.jcuit.2018.06.015.Zhang C , |
null | |
null | 张武龙, 张井勇, 范广洲, 2015, CMIP5 模式对我国西南地区干湿季降水的模拟和预估[J].大气科学, 39(3): 559-570. |
null |
/
〈 |
|
〉 |