基于多种降水数据产品的黄河源区径流模拟研究
收稿日期: 2023-06-09
修回日期: 2023-10-16
网络出版日期: 2023-10-16
基金资助
国家自然科学基金项目(42375032); 四川省科技计划项目(2021YJ0025); 成都信息工程大学科研项目(KYTZ201821)
Research on Runoff Simulation over the Source Area of the Yellow River based on the Multiple Precipitation Products
Received date: 2023-06-09
Revised date: 2023-10-16
Online published: 2023-10-16
黄河源区位于青藏高原的东北部, 该流域气象站点分布稀疏, 水文过程研究存在很大的局限性, 研究多种降水数据产品在流域的适用性对水文模型研究具有重要的推动作用。本文以黄河源区作为研究区域, 基于中国气象同化驱动数据集(China Meteorological Assimilation Datasets for SWAT model Version1.1, CMADS V1.1)、 热带降雨测量卫星(Tropical Rainfall Measurement Mission, TRMM)降水数据集(3B42 Version7)和气象站观测降水数据分别驱动土壤水文评估工具分布式水文模型(Soil and Water Assessment Tool, SWAT), 同时利用SWAT-CUP(SWAT Calibration and Uncertainty Program)和SUFI-2(Sequential Uncertainty Fitting2)算法对27个敏感性参数进行率定, 模拟黄河源区多年月平均径流量的变化规律, 并将模拟结果与观测值进行对比分析, 评估了CMADS和TRMM 3B42降水数据产品在该流域的精度以及SWAT模型在黄河源区的适用性。结果表明: (1)由3种降水数据获得的降水空间分布为由西向东递增的趋势, TRMM 3B42与实测降水在年和月变化上一致性好于CMADS数据集。(2)参数敏感性分析结果表明: SCS(Soil Conservation Service)径流曲线数、 地下水滞后系数、 土壤蒸发补偿系数对径流模拟的敏感性程度较强。(3)利用CMADS和TRMM 3B42降水数据集模拟的径流结果均优于实测降水数据, 流域内3个水文站在率定期的相关系数R分别是0.93, 0.92和0.88; TRMM 3B42模拟结果次之, 率定期和验证期的相关系数R均在0.80以上, 纳什系数(Nash-Sutcliffe efficiency coefficient, NSE)在0.50以上。本研究证明了CMADS数据集和SWAT模型在地貌类型复杂、 气候变化敏感的高海拔地区的径流模拟方面具有较好的适用性, 为气象站点稀缺的地区提供了建立水文模型的替换方案。
李晓玥 , 文军 , 谢琰 , 陈亚玲 , 陈怡璇 , 葛翔宇 . 基于多种降水数据产品的黄河源区径流模拟研究[J]. 高原气象, 2024 , 43(3) : 570 -582 . DOI: 10.7522/j.issn.1000-0534.2023.00086
The Source Area of the Yellow River is located in the northeastern part of the Qinghai-Xizang Plateau, and the meteorological stations are sparsely distributed in this basin, the study of the applicability of various precipitation data products has an important values in promoting the hydrological modeling in the basin.Based on the China Meteorological Assimilation Datasets for SWAT model Version1.1 (CMADS V1.1), the Tropical Rainfall Measurement Mission (TRMM) precipitation datasets (3B42 Version7) and the Soil and Water Assessment Tool (SWAT) driven by these precipitation data, respectively, and the SWAT-CUP (SWAT Calibration and Uncertainty Program) and SUFI-2 (Sequential Uncertainty Fitting2) algorithm 27 sensitivity parameters were rate in simulating the variation of multi-year monthly average runoff, the simulated results were compared with the observations to evaluate the accuracy of CMADS and TRMM 3B42 precipitation data products and the applicability of SWAT model were evaluated in the Source Area of the Yellow River source area.The results show that: (1) The distribution of all three precipitation datasets showed an increasing trend from the west to the east, and TRMM 3B42 was in better agreement with the measured precipitation than CMADS data set in terms of annual and monthly variation.(2) The sensitivity analysis of the parameters showed that the sensitivity degree of SCS (Soil Conservation Service) runoff curve number, groundwater lagging coefficient, and soil evaporation compensation coefficient were stronger than that of the others.(3) The simulated runoff by using the CMADS and TRMM 3B42 precipitation datasets had better results than that by using the measured precipitation data, with the correlation coefficients R 2 of 0.93, 0.92 and 0.88 for the rate period at the three hydrological stations, respectively, while the results of the TRMM 3B42 simulation were the next best, with the coefficients of correlation (R) of the rate-period and validation-period of above 0.80, and the Nash-Sutcliffe efficiency coefficient (NSE) of the simulations is above 0.50.This research demonstrates the applicability of CMADS datasets and SWAT model for runoff simulation in high-altitude areas with complex landscape types and sensitive to climate change, and provides a replacement solution for improving the hydrological models in areas where there are sparely meteorological stations.
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | 成璐, 沈润平, 师春香, 等, 2014.CMORPH和TRMM 3B42降水估计产品的评估检验[J].气象, 40(11):1372-1379.DOI:10.7519/j.issn.1000-0526.2014.11.010.Cheng L , |
null | |
null | 高燕, 2019.基于SWAT模型的流域土壤侵蚀及POC入海通量研究———以我国南方地区为例[D].南京:南京师范大学, 1-127.DOI:10.27245/d.cnki.gnjsu.2019.000634.Gao Y , 2019.Study on soil erosion and POC flux into sea basin based on SWAT Model-a case study in southern China[D].Nanjing:Nanjing Normal University, 1-127.DOI:10.27245/d.cnki.gnjsu. 2019. 000634 . |
null | 贾何佳, 李谢辉, 文军, 等, 2022.黄河源区径流变化模拟及未来趋势预估[J].资源科学, 44(6):1292-1304.DOI:10.18402/resci.2022.06.15.Jia H J , |
null | |
null | 郭敏, 方海燕, 李致颖, 2016.基于SWAT东北黑土区乌裕尔河流域径流模型模拟[J].水土保持研究, 23(4):43-47+54.DOI:10.13869/j.cnki.rswc.2016.04.007.Guo M , |
null | |
null | 蒋宗立, 刘时银, 郭万钦, 等, 2018.黄河源区阿尼玛卿山典型冰川表面高程近期变化[J].冰川冻土, 40(2):231-237.DOI:10.7522/j.issn.1000-0240.2018.0027.Jiang Z L , |
null | |
null | 李江苏, 孙威, 余建辉, 2020.黄河流域三生空间的演变与区域差异——基于资源型与非资源型城市的对比[J].资源科学, 42(12):2285-2299.DOI:10.18402/resci.2020.12.03.Li J S , |
null | |
null | 刘俊, 刘时银, 上官冬辉, 等, 2017.CMADS、ITPCAS和TRMM 3B423套降水数据集在玉龙喀什河流域的适用性评价[J].华北水利水电大学学报(自然科学版), 38(5):28-37.DOI:10.3969/j.issn.1002-5634.2017.05.004.Liu J , |
null | |
null | 刘兆晨, 杨梅学, 万国宁, 等, 2021.新型卫星降水产品在黄河源区的适用性分析——以SWAT模型为例[J].高原气象, 40(2):403-410.DOI:10.7522/j.issn.1000-0534.2020.00024.Liu Z C , |
null | |
null | 孟现勇, 师春香, 刘时银, 等, 2016.CMADS数据集及其在流域水文模型中的驱动作用——以黑河流域为例[J].人民珠江, 37(7):1-19.DOI:10.3969/j.issn.1001-9235.2016.07.001.Meng X Y , |
null | |
null | 秦大河, 丁一汇, 苏纪兰, 等, 2005.中国气候与环境演变评估(I):中国气候与环境变化及未来趋势[J].气候变化研究进展, 1(1):4-9.DOI:10.3969/j.issn.1673-1719.2005.01.002.Qin D H , |
null | |
null | 荣易, 秦成新, 杜鹏飞, 等, 2021.基于模型研究质量评价的SWAT模型参数取值特征分析[J].环境科学, 42(6):2769-2777.DOI:10.13227/j.hjkx.202010216.Rong Y , |
null | |
null | 王莺, 张强, 王劲松, 等, 2017.基于分布式水文模型(SWAT)的土地利用和气候变化对洮河流域水文影响特征[J].中国沙漠, 37(1):175-185.DOI:10.7522/j.issn.1000-649X.2015.00189.Wang Y , |
null | |
null | 王中根, 夏军, 刘昌明, 等, 2007.分布式水文模型的参数率定及敏感性分析探讨[J].自然资源学报, 22(4):649-655.DOI:10.11849/zrzyxb.2007.04.015.Wang Z G , |
null | |
null | 王中根, 刘昌明, 吴险峰, 2003.基于DEM的分布式水文模型研究综述[J].自然资源学报, 18(2):168-173.DOI:10.3321/j.issn:1000-3037.2003.02.007.Wang Z G , |
null | |
null | 魏丹, 刘智勇, 李小冰, 2012.SWAT模型及SUFI-2算法在秃尾河上游流域径流模拟中的应用[J].干旱地区农业研究, 30(6):200-206.DOI:10.3969/j.issn.1000-7601.2012.06.034.Wei D , |
null | |
null | 文军, 蓝永超, 苏中波, 等, 2011.黄河源区陆面过程观测和模拟研究进展[J].地球科学进展, 26(6):575-585.DOI:10.11867/j.issn.1001-8166.2011.06.0575.Wen J , |
null | |
null | 武月月, 文军, 王作亮, 等, 2022.黄河源高寒草原下垫面土壤冻融过程中陆-气间的水热交换特征分析[J].高原气象, 41(1):132-142.DOI:10.7522/j.issn.1000-0534.2021.00014.Wu Y Y , |
null | |
null | 徐洪亮, 常娟, 郭林茂, 等, 2021.青藏高原腹地多年冻土区活动层水热过程对气候变化的响应[J].高原气象, 40(2):229-243.DOI:10.7522/j.issn.1000-0534.2020.00071.Xu H L , |
null | |
null | 严登华, 袁喆, 王浩, 等, 2013.水文学确定性和不确定性方法及其集合研究进展[J].水利学报, 44(1):73-82.DOI:10.13243/j.cnki.slxb.2013.01.004.Yan D H , |
null | |
null | 杨泽康, 田佳, 李万源, 等, 2021.黄河流域生态环境质量时空格局与演变趋势[J].生态学报, 41(19):7627-7636.DOI:10.5846/stxb202012083131.Yang Z K , |
null | |
null | 姚檀栋, 邬光剑, 徐柏青, 等, 2019.“亚洲水塔”变化与影响[J].中国科学院院刊, 34(11):1203-1209.DOI:10.16418/j.issn. 1000-3045.2019.11.003.Yao T D , |
null | |
null | 张北赢, 徐学选, 刘文兆, 等, 2008.黄土丘陵沟壑区不同降水年型下土壤水分动态[J].应用生态学报, 19(6):1234-1240.DOI:10.13287/j.1001-9332.2008.0240.Zhang B Y , |
null |
/
〈 |
|
〉 |