论文

西南地区2000 -2020年植被覆盖度时空变化与影响因素分析

  • 刘雨亭 ,
  • 王磊 ,
  • 李谢辉 ,
  • 郭蕾
展开
  • 成都信息工程大学大气科学学院,高原大气与环境四川省重点实验室,四川 成都 610225

刘雨亭(1999 -), 男, 重庆人, 硕士研究生, 主要从事资源环境遥感研究. E-mail:

收稿日期: 2023-02-08

  修回日期: 2023-06-11

  网络出版日期: 2023-06-11

基金资助

云南省科技厅重点研发计划项目(202203AC100006); 中国气象局干旱气象科学研究基金项目(IAM202201)

Analysis on Spatio-Temporal Variability of Fractional Vegetation Cover and Influencing Factors from 2000 to 2020 in Southwestern China

  • Yuting LIU ,
  • Lei WANG ,
  • Xiehui LI ,
  • Lei GUO
Expand
  • Plateau Atmosphere and Environment Key Laboratory of Sichuan Province,School of Atmospheric Sciences,Chengdu University of Information Technology,Chengdu 610225,Sichuan,China

Received date: 2023-02-08

  Revised date: 2023-06-11

  Online published: 2023-06-11

摘要

西南地区是我国重要的生态安全屏障区, 也是生态脆弱和气候敏感区。本文基于MOD13A3的NDVI数据集, 利用像元二分模型首先计算了西南五省市区2000 -2020年西南整体和分省市区年、 生长季和四季的平均植被覆盖度FVC(Fractional Vegetation Cover), 并对不同时间尺度的FVC进行了时空变化特征分析, 然后利用ERA5的气温、 GPCP卫星降水和DEM等资料, 对过去21年影响西南地区FVC变化的主要影响因素进行了讨论, 最后利用Hurst指数对FVC的未来变化趋势进行了预测。结果表明: (1)2000 -2020 年以来, 西南地区东部FVC整体呈增加趋势, 尤其在重庆和贵州增加最快, 西藏地区总体呈下降趋势。(2) 西南地区FVC在空间上总体呈现东高西低的特点, 2000 -2020年平均FVC为0.46, 在年际空间变化上FVC的上升区域占西南地区总面积的43.9%, 下降区域占53.5%。(3)降水对FVC起促进作用, 气温在不同地区则表现出不同的影响。(4)人类活动对FVC的影响很大, 对植被的促进、 抑制和无影响区域分别占栅格百分比的40.4%、 47.6%和12.0%。(5)高程和不同时间尺度的FVC都显著相关, 但都呈现出极显著的下降趋势; 不同时间尺度的FVC随坡度增加都显著增加, 但当坡度大于25°后FVC会逐渐减小; 坡向对西南地区FVC的影响相较于坡度、 高程和气候因子的影响并不显著。(6)未来西藏、 西南地区东部的四川、 云南和贵州交界处的FVC整体将呈增加趋势, 而四川西部和横断山脉的大部分地区将呈减少趋势。研究结果能为西南地区生态保护方案的制定提供数据支撑和科学指导。

本文引用格式

刘雨亭 , 王磊 , 李谢辉 , 郭蕾 . 西南地区2000 -2020年植被覆盖度时空变化与影响因素分析[J]. 高原气象, 2024 , 43(1) : 264 -276 . DOI: 10.7522/j.issn.1000-0534.2023.00052

Abstract

The southwestern China is a vital ecological safeguard and is characterized by ecological fragility and climate sensitivity.Based on the MOD13A3 NDVI dataset, this study used a pixel dichotomy model to calculate the average Fractional Vegetation Cover (FVC) from 2000 to 2020 annually, during growing seasons, and in each of the four seasons for the whole southwestern China and its provinces, a spatio-temporal variation analysis was then performed on FVC across different time scales.The study also discussed the primary factors influencing FVC changes over the past 21 years, using ERA5 temperature data, GPCP satellite precipitation data, and DEM data.Finally, the Hurst Index was used to predict future FVC trends.(1) The results indicate that from 2000 to 2020, the overall FVC in the eastern part of the southwestern China showed an increasing trend, particularly in Chongqing and Guizhou, while Tibet showed a general decline.(2) Spatially, the FVC generally showed a "higher in the east and lower in the west" trend, with areas where FVC increased accounting for 43.9% of the total area, and areas of decrease accounting for 53.5%.(3) Precipitation promotes FVC, while temperature has varied effects in different regions.(4) Human activity significantly impacts FVC, with promotion, suppression, and no effect zones accounting for 40.4%, 47.6%, and 12.0% of the grid percentage, respectively.(5) Elevation and FVC over different time scales are significantly correlated but both exhibit a pronounced declining trend.FVC increases significantly with slope, but decreases when the slope is greater than 25°.The effect of aspect on FVC in the southwestern China is less significant than that of slope, elevation, and climatic factors.(6) In the future, the FVC in Tibet and the eastern parts of Sichuan, Yunnan, and Guizhou in the southwestern China will increase, while most areas of western Sichuan and the Hengduan Mountains will exhibit a decreasing trend.The results can provide data support and scientific guidance for the formulation of ecological protection plans in the southwestern China.

参考文献

null
Anees S A Zhang X L Shakeel M2022.Estimation of fractional vegetation cover dynamics based on satellite remote sensing in Pakistan: a comprehensive study on the FVC and its drivers[J].Journal of King Saud University-Science34(3): 101848.DOI: 101848.10.1016/j.jksus.2022.101848 .
null
Fang J Y Piao S L He J S2004.Increasing terrestrial vegetation activity in China, 1982-1999[J].Science in China(Life Sciences)47(3): 229-240.DOI: 10.1360/03yc0068 .
null
IPCC, 2021.Climate change 2021 the physical science basis[M/OL].[2021-08-01].
null
Lin G A X W B Ba J C, et al, 2020.Remote sensing algorithms for estimation of fractional vegetation cover using pure vegetation index values: A review[J].ISPRS Journal of Photogrammetry and Remote Sensing, 159: 364-377.DOI: 10.1016/j.isprsjprs. 2019.11.018 .
null
Li J Wang J L Zhang J2022.Growing--season vegetation coverage patterns and driving factors in the China-Myanmar Economic Corridor based on Google Earth Engine and geographic detector[J].Ecological Indicators, 136: 108620.DOI: 10.1016/J.ECOLIND.2022.108620 .
null
Nogueira M2020.Inter-comparison of ERA-5, ERA-interim and GPCP rainfall over the last 40 years: process-based analysis of systematic and random differences[J].Journal of Hydrology, 583: 124632.DOI: 10.1016/j.jhydrol.2020.124632 .
null
Wu D H Wu H Zhao X, et al, 2014.Evaluation of spatiotemporal variations of global fractional vegetation cover based on GIMMS NDVI data from 1982 to 2011[J].Remote Sensing6(5): 4217-4239.DOI: 10.3390/rs6054217 .
null
鲍艳, 魏宇晨, 南素兰, 等 , 2023a.全球2 ℃温升背景下青藏高原植被对气候变化的响应[J].高原气象42(1): 49-59.DOI: 10.7522/j.issn.1000-0534.2022.00074.Bao Y , WeiY C, NanS L, et al, 2023a.Vegetation over the Qinghai-Xizang Plateau in response to climate change with a 2 ℃ global warming[J].Plateau Meteorology, 42(1): 49-59.DOI: 10.7522/j.issn.1000-0534.2022.00074 .
null
鲍艳, 王玉琦, 南素兰, 等 , 2023b.青藏高原植被对未来气候变暖的反馈[J].高原气象42(3): 553-563.DOI: 10.7522/j.issn.1000-0534.2021.00109.Bao Y , WangY Q, NanS L, et al, 2023b.Response of vegetation over the Qinghai-Xizang Plateau to projected warming climate[J].Plateau Meteorology, 42(3): 553-563.DOI: 10.7522/j.issn.1000-0534.2021.00109 .
null
代仁丽, 2022.气候因子与不同下垫面对西南地区植被NDVI变化的影响研究[D].贵阳: 贵州师范大学.Dai R L, 2022.Study on the influence of climate factors and different substrates on the change of NDVI of vegetation in southwest China[D].Guiyang: Guizhou Normal University.
null
丰博, 董燕, 2022.2010-2020年云南省植被覆盖度时空变化及其地形效应[J].浙江林业科技42(3): 23-32.DOI: 10.3969/j.issn.1001-3776.2022.03.004.Feng B
null
Dong Y2022.Spatial-temporal changes of vegetation coverage and topographic effect in Yunnan Province from 2010 to 2020[J].Journal of Zhejiang Forestry Science and Technology42(3): 23-32.DOI: 10.3969/j.issn.1001-3776.2022.03.004 .
null
何清芸, 牟凤云, 李秋彦, 等, 2021.重庆植被覆盖度时空演变及驱动力地理学探究[J].科学技术与工程21(28): 11955-11962.DOI: 10.3969/j.issn.1671-1815.2021.28.008.He Q Y
null
Mu F Y Li Q Y, et al, 2021.Geography study on spatiotemporal evolution of fractional vegetation coverage and the driving forces in Chongqing[J].Science Technology and Engineering21(28): 11955-11962.
null
金凯, 王飞, 韩剑桥, 等, 2020.1982-2015年中国气候变化和人类活动对植被NDVI变化的影响[J].地理学报75(5): 961-974.
null
Jin K Wang F Han J Q, et al, 2020.Contribution of climatic change and human activities to vegetation NDVI change over China during 1982-2015[J].Acta Geographica Sinica75(5): 961-974.
null
李晶, 闫星光, 闫萧萧, 等, 2021.基于GEE云平台的黄河流域植被覆盖度时空变化特征[J].煤炭学报46(5): 1439-1450.DOI: 10.13225/j.cnki.jccs.ST21.0331.Li J
null
Yan X G Yan X X, et al, 2021.Temporal and spatial variation characteristic of vegetation coverage in the Yellow River Basin based on GEE cloud platform[J].Journal of China Coal Society46(5): 1439-1450.DOI: 10.13225/j.cnki.jccs.ST21.0331 .
null
李苗苗, 2003.植被覆盖度的遥感估算方法研究[D].北京: 中国科学院研究生院(遥感应用研究所).Li M M, 2003.The method of vegetation fraction estimation by remote sensing[D].Beijing: Graduate School of Chinese Academy of Sciences
null
Institute of Remote Sensing Applications, Chinese Academy of Sciences.
null
刘坤, 袁新, 肖寒予, 等, 2022.2000-2019年西藏草地植被覆盖度对气温和降水变化的响应[J].中国资源综合利用40(5): 95-99+103.DOI: 10.3969/j.issn.1008-9500.2022.05.028.Liu K
null
Yuan X Xiao H Y, et al, 2022.Responses of grassland fractional vegetation coverage to temperature and precipitation changes in Tibet from 2000 to 2019[J].China Resources Comprehensive Utilization40(5): 95-99+103.DOI: 10.3969/j.issn. 1008-9500.2022.05.028 .
null
缪利, 陆晴, 刘根林, 等, 2023.1999-2019年青藏高原不同植被类型NDVI时空演变特征及其对气候因子的响应[J].水土保持研究30(1): 97-105.DOI: 10.13869/j.cnki.rswc.2023.01.027.Miao L
null
Lu Q Liu G L, et al, 2023.Spatiotemporal evolution characteristics of NDVI of different vegetation types and its response to climate factors on the Qinghai-Tibet Plateau from 1999 to 2019[J].Research of Soil and Water Conservation30(1): 97-105.DOI: 10.13869/j.cnki.rswc.2023.01.027 .
null
彭睿文, 罗娅, 余军林, 等, 2017.中国西南地区2009-2015年植被覆盖度变化及其与降雨的关系[J].贵州师范大学学报(自然科学版)35(5): 15-23.DOI: 10.16614/j.cnki.issn1004-5570.2017.05.003.Peng R W
null
Luo Y Yu J L, et al, 2017.Vegetation cover change and its relationship with Rainfall in Southwest of China during 2009-2015[J].Journal of Guizhou Normal University (Natural Sciences)35(5): 15-23.DOI: 10.16614/j.cnki.issn1004-5570.2017.05.003 .
null
孙红雨, 王长耀, 牛铮, 等, 1998.中国地表植被覆盖变化及其与气候因子关系-基于NOAA时间序列数据分析[J].遥感学报2(3): 204-210.
null
Sun H Y Wang C Y Niu Z, et al, 1998.Analysis of the vegetation cover change and the relationship between NDVI and environmental factors by using NOAA time series data[J].National Remote Sensing Bulletin2(3): 204-210.
null
汤国安, 2019.中国数字高程图(1 km)[DS].北京: 国家青藏高原科学数据中心.[2022.06-12.].https: //www.tpdc.ac.cn/zh-hans/data/12e91073-0181-44bf-8308-c50e5bd9a734/.Tang G A, 2019.Digital elevation map of China (1 km) [DS].Beijing: National Tibetan Plateau Scientific Data Center.[2022.06-12.].
null
汤巧英, 戚德辉, 宋立旺, 等, 2017.基于GIS和RS的延河流域植被覆盖度与地形因子的相关性研究[J].水土保持研究24(4): 198-203.DOI: 10.13869/j.cnki.rswc.2017.04.033.Tang Q Y
null
Qi D H Song L W, et al, 2017.Correlation of vegetation coverage and topographic factors in Yanhe River Basin based on GIS and RS[J].Research of Soil and Water Conservation24(4): 198-203.DOI: 10.13869/j.cnki.rswc.2017.04.033 .
null
王晓蕾, 石守海, 陈江朝霞, 2022.黄河流域植被覆盖度变化及驱动因素研究[J].中国环境科学, 2022, 42(11): 5358-5368.DOI: 10.19674/j.cnki.issn1000-6923.20220712.002.Wang X L
null
Shi S H Chen J Z X2022.Change and driving factors of vegetation coverage in the Yellow River Basin[J].China Environmental Science, 2022, 42(11): 5358-5368.DOI: 10.19674/j.cnki.issn1000-6923.20220712.002 .
null
王洁, 2019.面向作物长势监测的Hurst指数算法改进及其应用[D].南京: 南京信息工程大学.Wang J, 2019.Improvement and application of Hurst Index Algorithms for crop growth monitoring[D].Nanjing: Nanjing University of Information Science & Technology.
null
熊巧利, 何云玲, 李同艳, 等, 2019.西南地区生长季植被覆盖时空变化特征及其对气候与地形因子的响应[J].水土保持研究26(6): 259-266.DOI: 10.13869/j.cnki.rswc.2019.06.034.Xiong Q L
null
He Y L Li T Y, et al, 2019.Spatiotemporal patterns of vegetation coverage and response to climatic and topographic factors in growth season in southwest China[J].Research of Soil and Water Conservation26(6): 259-266.DOI: 10. 13869/j.cnki.rswc.2019.06.034 .
null
张一然, 文小航, 罗斯琼, 等, 2022.近20 年若尔盖湿地植被覆盖变化与气候因子关系研究[J].高原气象41(2): 317-327.DOI: 10.7522/j.issn.1000-0534.2021.00076.Zhang Y R
null
Wen X H Luo S Q, et al, 2022.Study on the relationship between vegetation cover change and climate factors in Zoige Wetland in recent 20 years[J].Plateau Meteorology41(2): 317-327.DOI: 10.7522/ j.issn.1000- 0534.2021.00076 .
null
张志强, 刘欢, 左其亭, 等, 2021.2000-2019年黄河流域植被覆盖度时空变化[J].资源科学43(4): 849-858.DOI: 10.18402/resci.2021.04.18.Zhang Z Q
null
Liu H Zuo Q T, et al, 2021.Spatiotemporal change of fractional vegetation cover in the Yellow River Basin during 2000-2019[J].Resources Science43(4): 849-858.DOI: 10.18402/resci.2021.04.18 .
null
郑朝菊, 曾源, 赵玉金, 等, 2016.20世纪90年代以来中国西南地区土地覆被变化[J].生态学报36(23): 7858-7869.DOI: 10.5846/stxb201511102277.Zheng Z J
null
Zeng Y Zhao Y J, et al, 2016.Analysis of land cover changes in southwestern China since the 1990s[J].Acta Ecologica Sinica36(23): 7858-7869.DOI: 10.5846/stxb201511102277 .
null
赵慧芳, 曹晓云, 2022.三江源国家公园植被覆盖度时空变化及其气候驱动因素[J].高原气象41(2): 328-337.DOI: 10.7522/j.issn.1000-0534.2021.00091.Zhao H F
null
Cao X Y2022.Vegetation cover changes and its climate driving in Three-River-Source National Park[J].Plateau Meteorology41(2): 328-337.DOI: 10.7522/j.issn.1000-0534.2021.00091 .
null
赵丹, 王祖伟, 张国壮, 等, 2022.因子回归和交互联合探索区域植被覆盖度的影响因素—以三江源地区为例[J].中国环境科学42(8): 3903-3912.DOI: 10.19674/j.cnki.issn1000-6923.20220329.011.Zhao D
null
Wang Z W Zhang G Z, et al, 2022.Identifying factors affecting regional fractional vegetation cover based on a combination of factor regression and interaction—A case study on the Three-River Headwaters Region[J].China Environmental Science42(8): 3903-3912.DOI: 10.19674/j.cnki.issn1000-6923.20220329.011 .
文章导航

/