论文

黄土高原表层土壤湿度与降水关系的分析

  • 廖慧仁 ,
  • 黄倩 ,
  • 王梦圆 ,
  • 王瑞 ,
  • 张君霞 ,
  • 张永鹏 ,
  • 郭坤
展开
  • 1. 兰州大学大气科学学院半干旱气候变化教育部重点实验室,甘肃 兰州 730000
    2. 兰州中心气象台,甘肃 兰州 730020

廖慧仁(1999 -), 男, 广西贺州人, 硕士研究生, 主要从事大气边界层和陆气相互作用的研究. E-mail:

收稿日期: 2023-06-12

  修回日期: 2023-09-12

  网络出版日期: 2023-09-12

基金资助

国家自然科学基金项目(42175088); 甘肃省自然科学基金青年科技基金计划项目(22JR5RA514); 干旱气象科学研究基金项目(IAM202206)

Analysis of the Relationship between Surface Soil Moisture and Precipitation over the Loess Plateau

  • Huiren LIAO ,
  • Qian HUANG ,
  • Mengyuan WANG ,
  • Rui WANG ,
  • Junxia ZHANG ,
  • Yongpeng ZHANG ,
  • Kun GUO
Expand
  • 1. Key Laboratory for Semi-Arid Climate Change of the Ministry of Education,College of Atmospheric Sciences,Lanzhou University,Lanzhou 730000,Gansu,China
    2. Lanzhou Central Meteorological Observatory,Lanzhou 730020,Gansu,China

Received date: 2023-06-12

  Revised date: 2023-09-12

  Online published: 2023-09-12

摘要

使用黄土高原气象台站的土壤湿度和降水观测资料以及GLDAS和CMFD再分析资料, 分析黄土高原地区土壤湿度与降水量的时空分布及变化特征, 通过回归分析、 格兰杰因果检验和奇异值分解(Singular value decomposition, SVD), 研究土壤湿度与降水之间的关系, 分析初始土壤湿度影响随后降水的时间尺度与空间范围。结果显示: 黄土高原的土壤湿度与随后1~2个月降水回归分析的解释方差相对较高, 较大值在夏秋季节(7 -10月), 黄土高原不同区域(I区、 II区和III区)的土壤湿度与随后21天降水相关的时间较全区域的多, 时间较集中, 说明黄土高原土壤湿度分布不均匀, 不同区域差别较大, 较大的滞后降水时间尺度适用于较大空间范围的分析。格兰杰因果检验表明黄土高原全区域秋季(10月、 11月)的初始土壤湿度对随后1个月或2个月的降水有显著影响, 在III区8月土壤湿度对10月的降水也有显著影响, 这与回归分析的结果一致。再分析资料的SVD分解的结果显示, 1979 -2014年7月黄土高原中部、 北部和东部土壤较湿润时, 8月西部和北部边缘的降水偏多; 9月东部的土壤偏湿润, 则10月黄土高原西部以及南北部的一些地区降水偏多。土壤湿度与降水的显著相关区域重叠部分较少, 说明黄土高原土壤湿度对降水的影响存在一定程度的时空不对称性。

本文引用格式

廖慧仁 , 黄倩 , 王梦圆 , 王瑞 , 张君霞 , 张永鹏 , 郭坤 . 黄土高原表层土壤湿度与降水关系的分析[J]. 高原气象, 2024 , 43(3) : 549 -560 . DOI: 10.7522/j.issn.1000-0534.2023.00075

Abstract

Observed soil moisture and precipitation as well as GLDAS and CMFD reanalysis data are used to analyze the spatial and temporal distribution and variation trend in the Loess Plateau region.Regression analysis, Granger causality test and singular value decomposition (SVD) are used to study the relationship between soil moisture and precipitation, and to analyze the temporal scale and spatial range of the influence of initial soil moisture on subsequent precipitation.The results show that the explained variance of the regression analysis of soil moisture and subsequent 1~2 months precipitation on the Loess Plateau is relatively high, with larger values in the summer and fall seasons (July, August, September, and October).That the correlation between soil moisture and the subsequent 21 days of precipitation in different regions of the Loess Plateau (zones I, II, and III) is more frequent and concentrated than that in the whole region.This indicates that soil moisture on the Loess Plateau is heterogeneous so that a larger lagged precipitation time scale is just suitable for analysis at larger spatial scales.The Granger causality test shows that the initial soil moisture in the fall (October and November) across the Loess Plateau has a significant effect on the precipitation in the following 1 or 2 months, and the soil moisture in August also has a significant effect on the precipitation in October in Area III, which is consistent with the results of the regression analysis.The result of the SVD decomposition shows that from 1979 to 2014, when soils in the central, northern, and eastern parts of the Loess Plateau are wetter in July, the precipitation in the western and northern margins of the plateau is accordingly more in August.A wetter soil in the eastern part of the plateau in September means more precipitation in the western part of the plateau, as well as some parts of the northern and southern parts of the plateau, in October.The significant correlation between soil moisture and precipitation has fewer overlapping regions, suggesting spatial and temporal asymmetry in the influence of soil moisture on precipitation on the Loess Plateau.

参考文献

null
Couvreux F Roehrig R Rio C, et al, 2015.Representation of daytime moist convection over the semi-arid Tropics by parameterizations used in climate and meteorological models[J].Quarterly Journal of the Royal Meteorological Society141(691): 2220-2236.DOI: 10.1002/qj.2517 .
null
Eltahir E A B Pal J S1996.Relationship between surface conditions and subsequent rainfall in convective storms[J].Journal of Geophysical Research: Atmospheres101(D21): 26237-26245.DOI: 10.1029/96JD01380 .
null
Eltahir E A B1998.A soil moisture-rainfall feedback mechanism: 1.theory and observations[J].Water Resources Research34(4): 765-776.DOI: 10.1029/97WR03499 .
null
Findell K L Eltahir E A B1997.An analysis of the soil moisture-rainfall feedback, based on direct observations from Illinois[J].Water Resources Research33(4): 725-735.DOI: 10.1029/96WR03756 .
null
Findell K L Eltahir E A B2003.Atmospheric controls on soil moisture-boundary layer interactions.part i: framework development[J].Journal of Hydrometeorology4(3): 552-569.DOI: 10. 1029/2001JD001515 .
null
Granger C W J1981.Some properties of time series data and their use in econometric model specification[J].Journal of Econometrics16(1): 121-130.DOI: 10.1016/0304-4076(81)90079-8 .
null
Gu L H Meyers T Pallardy S G, et al, 2006.Direct and indirect effects of atmospheric conditions and soil moisture on surface energy partitioning revealed by a prolonged drought at a temperate forest site[J].Journal of Geophysical Research111(D16): D16102.DOI: 10.1029/2006JD007161 .
null
Guichard F Petch J C Redelsperger J L, et al, 2004.Modeling the diurnal cycle of deep precipitating convection over land with cloud-resolving models and single-column models[J].Quarterly Journal of the Royal Meteorological Society130(604): 3139-3172.DOI: 10.1256/qj.03.145 .
null
Garcia-carreras L Parker D J Marsham J H, et al, 2015.The turbulent structure and diurnal growth of the Saharan atmospheric boundary layer[J].Journal of the Atmospheric Sciences72(2): 693-713.DOI: 10.1175/JAS-D-13-0384.1 .
null
Huang Q Marsham J H Parker D J, et al, 2010.Simulations of the effects of surface heat flux anomalies on stratification, convective growth, and vertical transport within the Saharan boundary layer[J].Journal of Geophysical Research115(D5): D05201.DOI: 10.1029/2009JD0126897 .
null
Han C Brdar S Kollet S2019.Response of convective boundary layer and shallow cumulus to soil moisture heterogeneity: a large-eddy simulation study[J].Journal of Advances in Modeling Earth Systems11(12): 4305-4322.DOI: 10.1029/2019MS001772 .
null
He J Yang K Tang W J, et al, 2020.The first high-resolution meteorological forcing dataset for land process studies over China[J].Scientific Data7(1): 25.DOI: 10.1038/s41597-020-0369-y .
null
Koster R D Sud Y C Guo Z, et al, 2006.GLACE: the global land-atmosphere coupling experiment.Part I: overview[J].Journal of Hydrometeorology7(4): 590-610.DOI: 10.1175/JHM510.1 .
null
Kim C P Entekhabi D1998.Impact of soil heterogeneity in a mixed-layer model of the planetary boundary layer[J].Hydrological Sciences Journal43(4): 633-658.DOI: 10.1080/02626669809492158 .
null
Kang S L Bryan G H2011.A large-eddy simulation study of moist convection initiation over heterogeneous surface fluxes[J].Monthly Weather Review139(9): 2901-2917.DOI: 10.1175/MWR-D-10-05037.1 .
null
Kang S L2016.Regional Bowen ratio controls on afternoon moist convection: a large eddy simulation study: Bowen Ratio controls on moist convection[J].Journal of Geophysical Research: Atmospheres121(23): 14056-14083.DOI: 10.1002/2016JD025567 .
null
Meehl G A1994.Influence of the land surface in the Asian Summer Monsoon: external conditions versus internal feedbacks[J].Journal of Climate7(7): 1033-1049.DOI: 10.1175/1520-0442(1994)007<1033: IOTLSI>2.0.CO; 2 .
null
Meng X H Li R Luan L, et al, 2018.Detecting hydrological consistency between soil moisture and precipitation and changes of soil moisture in summer over the Tibetan Plateau[J].Climate Dynamics, 51, 4157-4168.DOI: 10.1007/s00382-017-3646-5 .
null
Meng X H Deng M S Talib J, et al, 2023.Diagnosing product variability in the soil moisture response to precipitation on the Tibetan Plateau[J].Journal of Hydrometeorology, 24: 625-639.DOI: 10.1175/JHM-D-22-0181.1 .
null
Rochetin N Couvreux F Guichard F2017.Morphology of breeze circulations induced by surface flux heterogeneities and their impact on convection initiation: breeze circulations induced by surface heterogeneities[J].Quarterly Journal of the Royal Meteorological Society143(702): 463-478.DOI: 10.1002/qj.2935 .
null
Rieck M Hohenegger C Van Heerwaarden C C2014.The influence of land surface heterogeneities on cloud size development[J].Monthly Weather Review142(10): 3830-3846.DOI: 10.1175/MWR-D-13-00354.1 .
null
Rodell M Houser P R Jambor U, et al, 2004.The global land data assimilation system[J].Bulletin of the American Meteorological Society85(3): 381-394.DOI: 10.1175/BAMS-85-3-381 .
null
Santanello J A Peters-lidard C D Kennedy A, et al, 2013.Diagnosing the nature of land-atmosphere coupling: a case study of dry/wet extremes in the U.S.Southern Great Plains[J].Journal of Hydrometeorology14(1): 3-24.DOI: 10.1175/JHM-D-12-023.1 .
null
Seneviratne S I Corti T Davin E L, et al, 2010.Investigating soil moisture-climate interactions in a changing climate: a review[J].Earth-Science Reviews99(3/4): 125-161.DOI: 10.1016/j.earscirev.2010.02.004 .
null
Sanchez-mejia Z M Papuga S A2014.Observations of a two-layer soil moisture influence on surface energy dynamics and planetary boundary layer characteristics in a semiarid shrubland: observations of two-layer soil moisture[J].Water Resources Research50(1): 306-317.DOI: 10.1002/2013WR014135 .
null
Taylor C M Gounou A Guichard F, et al, 2011.Frequency of Sahelian storm initiation enhanced over mesoscale soil-moisture patterns[J].Nature Geoscience4(7): 430-433.DOI: 10.1038/ngeo1173 .
null
Wu L Y Zhang J Y2013.Role of land-atmosphere coupling in summer droughts and floods over eastern China for the 1998 and 1999 cases[J].Chinese Science Bulletin58(32): 3978-3985.DOI: 10.1007/s11434-013-5855-6 .
null
Wang K C Dickinson R E2012.A review of global terrestrial evapotranspiration: observation, modeling, climatology, and climatic variability: global terrestrial evapotranspiration[J].Reviews of Geophysics50(2): 1-54.DOI: 10.1029/2011RG000373 .
null
Wang Y Di Sabatino S Martilli A, et al, 2017.Impact of land surface heterogeneity on urban heat island circulation and sea-land breeze circulation in Hong Kong: UHIC and SLBC in Hong Kong[J].Journal of Geophysical Research: Atmospheres122(8): 4332-4352.DOI: 10.1002/2017JD026702 .
null
Yang F Lu H Yang K, et al, 2017.Evaluation and comparison among multiple forcing data sets for precipitation and shortwave radiation over Mainland China[J].Hydrology and Earth System Sciences Discussions21(11): 5805-5821.DOI: 10. 5194/HESS-2017-321 .
null
程善俊, 管晓丹, 黄建平, 等, 2013.利用GLDAS资料分析黄土高原半干旱区土壤湿度对气候变化的响应[J].干旱气象31(4): 641-649.DOI: 10.11755/j.issn.1006-7639(2013)-04-0641.Cheng S J
null
Guan X D Huang J P, et al, 2013.Analysis of response of soil moisture to climate change in semi-arid Loess Plateau in China based on GLDAS data[J].Journal of Arid Meteorology31(4): 641-649.DOI: 10.11755/j.issn.1006-7639(2013)-04-0641 .
null
陈少勇, 郭凯忠, 董安祥, 2008.黄土高原土壤湿度变化规律研究[J].高原气象27(3): 530-537.
null
Chen S Y Guo K Z Dong A X2008.Research of variety rule of soil humidity in Loess Plateau of China[J].Plateau Meteorology27(3): 530-537.
null
丁裕国, 江志红, 1996.SVD方法在气象场诊断分析中的普适性[J].气象学报54(3): 365-372.DOI: 10.11676/qxxb1996. 037.Ding Y G
null
Jiang Z H1996.Generality of singular value decomposition in diagnostic analysis of meteorological field[J].Acta Meteorologica Sinica54(3): 365-372.DOI: 10.11676/qxxb1996.037 .
null
丁旭, 赖欣, 范广洲, 2022.青藏高原春季土壤湿度异常与我国夏季降水的联系[J].高原气象41(1): 24-34.DOI: 10.7522/j.issn.1000-0534.2020.00094.Ding X
null
Lai X Fan G Z2022.Impacts of spring soil moisture anomalies in Qinghai-Xizang Plateau on the summer precipitation variability in China[J].Plateau Meteorology41(1): 24-34.DOI: 10.7522/j.issn.1000-0534. 2020.00094 .
null
高佳佳, 杜军, 卓嘎, 2021.青藏高原春季土壤湿度与夏季降水的关系[J].大气科学学报44(2): 219-227.DOI: 10.13878/j.cnki.dqkxxb.20200720001.Gao J J
null
Du J Zhuo G2021.Relationship between soil moisture in spring and precipitation in summer over the Tibetan Plateau[J].Transactions of Atmospheric Sciences44(2): 219-227.DOI: 10.13878/j.cnki.dqkxxb. 20200720001 .
null
刘维成, 张强, 刘新伟, 2021.陆-气相互作用对大气对流活动影响研究进展和展望[J].高原气象40(6): 1278-1293.DOI: 10.7522/j.issn.1000-0534.2021.zk0019.Liu W C
null
Zhang Q Liu X W2021.The impact of land-atmosphere interaction on the initiation and development of convective activities: a review[J].Plateau Meteorology40(6): 1278-1293.DOI: 10.7522/j.issn.1000-0534.2021.zk0019 .
null
刘欢欢, 王飞, 张廷龙, 2018.CLDAS和GLDAS土壤湿度资料在黄土高原的适用性评估[J].干旱地区农业研究36(5): 270276.DOI: 10.7606/j.issn.1000-7601.2018.05.38.Liu H H
null
Wang F Zhang T L2018.Evaluation applicability of CLDAS and GLDAS soil moisture for the Loess Plateau[J].Agricultural Research in the Arid Areas36(5): 270276.DOI: 10.7606/j.issn.1000-7601.2018.05.38 .
null
李峰平, 章光新, 董李勤, 2013.气候变化对水循环与水资源的影响研究综述[J].地理科学33(4): 457-464.DOI: 10.13249/j.cnki.sgs.2013.04.457.Li F P
null
Zhang G X Dong L Q2013.Studies for impact of climate change on hydrology and water resources[J].Scientia Geographica Sinica33(4): 457-464.DOI: 10.13249/j.cnki.sgs.2013.04.457 .
null
林朝晖, 刘辉志, 谢正辉, 等, 2008.陆面水文过程研究进展[J].大气科学32(4): 935-949.DOI: 10.3878/j.issn.1006-9895. 2008.04.19.Lin Z H
null
Liu H Z Xie Z H, et al, 2008.Recent progress in the land-surface and hydrological process studies[J].Chinese Journal of Atmospheric Sciences32(4): 935-949.DOI: 10.3878/j.issn.1006-9895.2008.04.19 .
null
栾澜, 孟宪红, 吕世华, 等, 2018.青藏高原土壤湿度触发午后对流降水模拟试验研究[J].高原气象37(4): 873-885.DOI: 10.7522/j.issn.1000-0534.2018.00008.Luan L
null
Meng X H S H, et al, 2018.Simulation on afternoon convective precipitation triggered by soil moisture over the Qinghai-Tibetan Plateau[J].Plateau Meteorology37(4): 873-885.DOI: 10.7522/j.issn.1000-0534.2018.00008 .
null
马英赛, 孟宪红, 韩博, 等, 2019.黄土高原土壤湿度对地表能量和大气边界层影响的观测研究[J].高原气象38(4): 705-715.DOI: 10.7522/j.issn.1000-0534.2019.00036.Ma Y S
null
Meng X H Han B, et al, 2019.Observations of soil moisture influence on surface energy dynamics and planetary boundary layer characteristics over the Loess Plateau[J].Plateau Meteorology38(4): 705-715.DOI: 10.7522/j.issn.1000-0534.2019.00036 .
null
马柱国, 符淙斌, 杨庆, 等, 2018.关于北方干旱化及其转折性变化[J].大气科学42(4): 951-961.DOI: 10.3878/j.issn. 10069895.1802.18110.Ma Z G
null
Fu Z B Yang Q, et al, 2018.Drying trend in northern China and its shift during 1951-2016[J].Chinese Journal of Atmospheric Sciences42(4): 951-961.DOI: 10.3878/j.issn.10069895.1802.18110 .
null
马耀明, 胡泽勇, 王宾宾, 等, 2021.青藏高原多圈层地气相互作用过程研究进展和回顾[J].高原气象40(6): 1241-1262.DOI: 10.7522/j.issn.1000-0534.2021.zk006.Ma Y M
null
Hu Z Y Wang B B, et al, 2021.The review of the observation experiments on land-atmosphere interaction progress on the Qinghai-Xizang(Tibetan)Plateau[J].Plateau Meteorology40(6): 1241-1262.DOI: 10.7522/j.issn.1000-0534.2021.zk006 .
null
孙秉强, 张强, 董安祥, 等, 2005.甘肃黄土高原土壤水分气候特征[J].地球科学进展20(9): 1041-1046.DOI: 10.11867/j.issn.1001-8166.2005.09.1041.Sun B Q
null
Zhang Q Dong A X, et al, 2005.Evolution feature on the moisture of so il for loess highland in Gansu[J].Advances in Earth Science20(9): 1041-1046.DOI: 10.11867/j.issn.1001-8166.2005.09.1041 .
null
吴稀稀, 黄倩, 王婵, 等, 2020.夏季金塔绿洲效应的理想数值试验研究[J].干旱气象38(2): 195-204.DOI: 10.11755/j.issn. 1006-7639(2020)-02-0195.Wu X X
null
Huang Q Wang C, et al, 2020.Idealized numerical tests of oasis effect in Jinta oasis in summer[J].Journal of Arid Meteorology38(2): 195-204.DOI: 10.11755/j.issn.1006-7639(2020)-02-0195 .
null
王益君, 魏美云, 周潮, 等, 2021.经济政策不确定性, 通货膨胀与国别异质性——基于16个样本国家的分位数格兰杰因果检验分析[J].金融理论与实践504(7): 70-81.
null
Wang Y J Wei M Y Zhou C, et al, 2021.Economic policy uncertainty, inflation, and country heterogeneity: Quantile Granger causality test analysis for 16 sample countries[J].Financial Theory & Practice504(7): 70-81.
null
王澄海, 杨凯, 张飞民, 等, 2021.青藏高原土壤冻融过程的气候效应: 进展和展望[J].高原气象40(6): 1318-1336.DOI: 10.7522/j.issn.1000-0534.2021.zk021.Wang C H
null
Yang K Zhang F M, et al, 2021.Climate effects of soil freeze-thaw process over Qinghai-Xizang Plateau: progress and perspectives[J].Plateau Meteorology40(6): 1318-1336.DOI: 10.7522/j.issn.1000-0534.2021.zk021 .
null
徐新良, 2023.中国多年度省级行政区划边界数据[DB/OL].资源环境科学数据注册与出版系统.DOI: 10.12078/2023010103 .[2023-06-10].2023.China's multi-year provincial administrative division boundary data[DB/OL].Resource and Environmental Science Data Registration and Publication System.DOI: 10.12078/2023010103 .[2023-06-10].
null
游松财, 邸苏闯, 袁晔, 2009.黄土高原地区土壤田间持水量的计算[J].自然资源学报24(3): 545-552.DOI: 10.11849/zrzyxb. 2009.03.020.You S C
null
Di S C Yuan Y2009.Study on soil field capacity estimation in the Loess Plateau region[J].Journal of Natural Resources24(3): 545-552.DOI: 10.11849/zrzyxb.2009.03.020 .
null
张强, 王胜, 2007.关于干旱和半干旱区陆面水分过程的研究[J].干旱气象25(2): 1-4.
null
Zhang Q Wang S2007.Processes of water transfer over land surface in arid and semi arid region of China[J].Journal of Arid Meteorology25(2): 1-4.
null
张人禾, 刘栗, 左志燕, 2016.中国土壤湿度的变异及其对中国气候的影响[J].自然杂志38(5): 313-319.DOI: 10.3969/j.issn.0253-9608.2016.05.001.Zhang R H
null
Liu L Zuo Z Y2016.Variations of soil moisture over China and their influences on Chinese climate[J].Chinese Journal of Nature38(5): 313-319.DOI: 10.3969/j.issn.0253-9608.2016.05.001 .
null
张璐, 黄倩, 张宏昇, 等, 2021.干湿地表的湍流特征及其对深对流影响的大涡模拟[J].气象学报79(4): 659-673.DOI: 10. 11676/qxxb2021.037.Zhang L
null
Huang Q Zhang H S, et al, 2021.Large eddy simulation of turbulence effects on deep-convection triggering over dry and wet surfaces[J].Acta Meteorologica Sinica79(4): 659-673.DOI: 10.11676/qxxb2021. 037 .
null
赵亚丽, 王云强, 张兴昌, 2020.黄土高原生态工程区土壤容重及饱和导水率的分布特征[J].农业工程学报36(10): 83-89.DOI: 10.11975/j.issn.1002-6819.2020.10.010.Zhao Y L
null
Wang Y Q Zhang X C2020.Distribution characteristics of bulk density and saturated hydraulic conductivity in intensive land restoration project areas on the Loess Plateau[J].Transactions of the Chinese Society of Agricultural Engineering36(10): 83-89.DOI: 10.11975/j.issn.1002-6819.2020.10.010 .
文章导航

/