论文

利用轨迹追踪法研究雅鲁藏布江大峡谷区域水汽输送减少的成因

  • 张登旭 ,
  • 阎虹如 ,
  • 苗云飞 ,
  • 张敏
展开
  • 兰州大学大气科学学院 半干旱气候变化教育部重点实验室,甘肃 兰州 730000

张登旭(1999 -), 男, 山东济宁人, 硕士研究生, 主要从事青藏高原水汽研究. E-mail:

收稿日期: 2022-11-26

  修回日期: 2023-05-02

  网络出版日期: 2024-01-11

基金资助

中国科学院战略性先导科技专项(XDA2006010301); 国家自然科学基金项目(42275073)

Analysis of Water Vapor Transport Reduction in the Yarlung Tsangpo Grand Canyon Region: a Trajectory Tracking Approach

  • Dengxv ZHANG ,
  • Hongru YAN ,
  • Yunfei MIAO ,
  • Min ZHANG
Expand
  • Key Laboratory for Semi-Arid Climate Change of the Ministry of Education,College of Atmospheric Sciences,Lanzhou University,Lanzhou 730000,Gansu,China

Received date: 2022-11-26

  Revised date: 2023-05-02

  Online published: 2024-01-11

摘要

雅鲁藏布江大峡谷区域作为高原的主要水汽输送入口, 自1979年至今水汽通量辐合及降水量呈持续减少趋势, 这对高原水储量具有重要影响。为了探究该区域水汽输送减少的原因, 本文利用ERA5逐小时再分析资料驱动LAGRANTO模型, 选取典型干旱年份和湿润年份的夏季(6 -8月), 后向追踪该区域的水汽输送轨迹, 对沿轨迹输送的水汽通量变化进行对比分析。研究发现, 源自洋面的水汽主要来自高原南部的孟加拉湾, 高原西南侧的阿拉伯海, 赤道以南的印度洋以及南中国海四个区域, 水汽输送主要受南亚和印度夏季风控制, 并受索马里跨赤道急流影响。通过对比分析干、 湿年份的水汽输送轨迹的特征, 发现干湿年轨迹路径除南海源地外基本不变, 轨迹上水汽通量随轨迹高度抬升而减少, 且湿润年的损耗始终低于干旱年, 其中孟加拉湾源地的轨迹得到洋面的水汽补充, 在湿润年水汽通量有较强的增长。干湿年份的蒸发、 降水、 环流场形势的对比也佐证了这一发现。最终湿润年到达雅鲁藏布江峡谷边界的水汽通量大于干旱年, 尤其是经由雅鲁藏布江峡谷区域南边界进入的水汽通量显著增大, 这表明, 除源地水汽贡献和大尺度季风环流影响外, 水汽输送途中的降水损耗相关过程对雅鲁藏布江峡谷区域水汽收支具有决定性作用。

本文引用格式

张登旭 , 阎虹如 , 苗云飞 , 张敏 . 利用轨迹追踪法研究雅鲁藏布江大峡谷区域水汽输送减少的成因[J]. 高原气象, 2024 , 43(1) : 114 -126 . DOI: 10.7522/j.issn.1000-0534.2023.00050

Abstract

The Yarlung Tsangpo River Grand Canyon region serves as a main water vapor entrance for the Tibetan plateau.However, the region has been experiencing a persistent decline in both water vapor convergence and precipitation since 1979, which has an important impact on the water storage over the Tibetan Plateau.In order to investigate the reasons behind this reduction in water vapor transport in the area, ERA5 hourly reanalysis data were utilized to drive the LAGRANTO model to derive the backwards water vapor transport trajectories in the region during the boreal summer (June to August) of typical dry and wet years, facilitating a comparative analysis of alterations in moisture flux along these trajectories.It was found that the water vapor sources primarily originating from four oceanic regions: the Bay of Bengal in the southern plateau, the Arabian Sea on the southwest side of the plateau, the Indian Ocean around south of the equator, and the South China Sea.The water vapor transportation in these regions is predominantly governed by the South Asian and Indian summer monsoons and influenced by the Somalia cross-equatorial jet.By comparing the characteristics of water vapor transport trajectories in dry and wet years, it is evident that trajectory patterns remain largely unchanged, with the exception of the South China Sea source.Furthermore, moisture flux along these trajectories diminishes as elevation increases, and the moisture loss during wet years consistently proves to be lower than that during dry years.Additionally, the trajectories originating from the Bay of Bengal source are supplemented by water vapor from the ocean surface, resulting in significant increased water vapor flux in wet years.This finding is supported by comparing the evaporation, precipitation, and circulation fields between dry and wet years.Ultimately, during wet years, the moisture flux reaching the boundaries of the Yarlung Tsangpo Grand Canyon region surpasses that of dry years, notably marked by a particularly significant increase in moisture entering through the southern boundary.This highlights that the depletion processes during water vapor transport, in addition to contributions from moisture sources and the influence of large-scale monsoonal circulation, play a critical role in determining the moisture equilibrium within the Yarlung Tsangpo Grand Canyon region.

参考文献

null
Chen B Yu W Wang W, et al, 2021.A global assessment of precipitable water vapor derived from GNSS zenith tropospheric delays with ERA5, NCEP FNL, and NCEP GFS products[J].Earth and Space Science8(8): 1-22.DOI: 10.1029/2021EA001796 .
null
Dai A G2023.The diurnal cycle from observations and ERA5 in surface pressure, temperature, humidity, and winds[J].Climate Dynamics, 61: 2965-2990 DOI: 10.1007/s00382-023-06721-x .
null
Deng H Y Zhang G Liu C W, et al, 2022.Assessment on the water vapor flux from atmospheric reanalysis data in the South China Sea on 2019 Summer[J].Journal of Hydrometeorology, 23: 847-858.DOI: 10.1175/JHM-D-21-0210.1 .
null
Guo L Klingaman N Demory M E, et al, 2018.The contributions of local and remote atmospheric moisture fluxes to East Asian precipitation and its variability[J].Climate Dynamics, 51: 4139-4156.DOI: 10.1007/s00382-017-4064-4 .
null
Huang L K Fang X Y Zhang T X, et al, 2023.Evaluation of surface temperature and pressure derived from MERRA-2 and ERA5 reanalysis datasets and their applications in hourly GNSS precipitable water vapor retrieval over China[J].Geodesy and Geodynamics14(2): 111-120.DOI: 10.1016/j.geog.2022.08.006 .
null
Huang W Y Qiu T P Yang Z F, et al, 2018.On the formation mechanism for wintertime extreme precipitation events over the Southeastern Tibetan Plateau[J].Journal of Geophysical Research: Atmospheres123(22): 12, 612-692, 714.DOI: https: //doi.org/10.1029/2018JD028921 .
null
Kurita N Yamada H2008.The role of local moisture recycling evaluated using stable isotope data from over the middle of the Tibetan Plateau during the monsoon season[J].Journal of Hydrometeorology, 9: 760-775,.DOI: 10.1175/2007JHM945.1 .
null
Lu C X Yu G Xie G D2005.Tibetan Plateau serves as a water tower[C/OL].International Geoscience and Remote Sensing Symposium, 5: 3120-3123.DOI: 10.1109/IGARSS.2005.1526498 .
null
Ma Y Z Lu M Q Bracken C, et al, 2020.Spatially coherent clusters of summer precipitation extremes in the Tibetan Plateau: Where is the moisture from?[J].Atmospheric Research, 237: 104841.DOI: 10.1016/j.atmosres.2020.104841 .
null
Ma Y Z Lu M Q Chen H N, et al, 2018.Atmospheric moisture transport versus precipitation across the Tibetan Plateau: A mini-review and current challenges[J].Atmospheric Research, 209: 50-58.DOI: 10.1016/j.atmosres.2018.03.015 .
null
Petterssen S1956.Book reviews: Weather analysis and forecasting.vol.I, motion and motion systems; weather analysis and forecasting.vol.II, weather and weather systems[J].Science, 124: 728-729.DOI: 10.1126/science.124.3225.728 .
null
Qiu X Zhang M J Dong Z W, et al, 2021.Contribution of recycled moisture to precipitation in northeastern Tibetan Plateau: a case study based on Bayesian Estimation[J].Atmosphere, 12: 731.DOI: 10.3390/atmos12060731 .
null
Sprenger M Wernli H2015.The LAGRANTO lagrangian analysis tool-version 2.0[J].Geoscientific Model Development, 8: 2569-2586.DOI: 10.5194/gmd-8-2569-2015 .
null
Stohl A James P2004.A lagrangian analysis of the atmospheric branch of the global water cycle.part I: method description, validation, and demonstration for the august 2002 flooding in central Europe[J].Journal of Hydrometeorology, 5: 656-678.DOI: 10.1175/1525-7541(2004)005<0656: ALAOTA>2.0.CO; 2 .
null
Stohl A James P2005.A lagrangian analysis of the atmospheric branch of the global water cycle.part II: moisture transports between earth’s ocean basins and river catchments[J].Journal of Hydrometeorology, 6: 961-984,.DOI: 10.1175/JHM470.1 .
null
Sugimoto S Ueno K SHA W2008.Transportation of water vapor into the Tibetan Plateau in the case of a passing Synoptic-Scale trough[J].Journal of The Meteorological Society of Japan, 86: 935-949.DOI: 10.2151/jmsj.86.935 .
null
Wernli H Davies H1997.A lagrangian-based analysis of extratropical cyclones.I: The method and some applications[J].Quarterly Journal of the Royal Meteorological Society, 123: 467-489.DOI: 10.1002/qj.49712353811 .
null
Wu G X Liu Y M He B, et al, 2012.Thermal controls on the Asian summer monsoon[J].Scientific reports, 2: 404.DOI: 10.1038/srep00404 .
null
Wu G X Zhang Y S1998.Tibetan Plateau forcing and the timing of the monsoon onset over south Asia and the South China Sea[J].Monthly Weather Review, 126: 913-927.DOI: 10.1175/1520-0493(1998)126<0913: TPFATT>2.0.CO; 2 .
null
Xu Y Gao Y H2019.Quantification of evaporative sources of precipitation and its changes in the southeastern Tibetan Plateau and middle Yangtze River Basin[J].Atmosphere, 10: 428.DOI: 10. 3390/atmos10080428 .
null
Yan H R Huang J P He Y L, et al, 2020.Atmospheric water vapor budget and its long‐term trend over the Tibetan Plateau[J].Journal of Geophysical Research: Atmospheres, 125: e2020JD033297.DOI: 10.1029/2020JD033297 .
null
Yao T D Thompson L Yang W, et al, 2012.Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J].Nature Climate Change2(9): 663-667.DOI: 10.1038/nclimate1580 .
null
Yuan X Yang K Lu H, et al, 2021.Characterizing the features of precipitation for the Tibetan Plateau among four gridded datasets: Detection accuracy and spatio-temporal variabilities[J].Atmospheric Research, 264: 105875.DOI: 10.1016/j.atmosres. 2021.105875 .
null
Zhang C2020.Moisture source assessment and the varying characteristics for the Tibetan Plateau precipitation using TRMM[J].Environmental Research Letters, 15: 104003.DOI: 10.1088/1748-9326/abac78 .
null
Zhang C Tang Q H Chen D L2016.Recent changes in the moisture source of precipitation over the Tibetan Plateau[J].Journal of Climate, 30: 1807-1819.DOI: 10.1175/JCLI-D-15-0842.1 .
null
Zhang Y Huang W Y Zhong D2019.Major moisture pathways and their importance to rainy season precipitation over the Sanjiangyuan region of the Tibetan Plateau[J].Journal of Climate, 32: 6837-6857.DOI: 10.1175/JCLI-D-19-0196.1 .
null
Zhao D Zhang L X Zhou T J2022.Detectable anthropogenic forcing on the long-term changes of summer precipitation over the Tibetan Plateau[J].Climate Dynamics, 59: 1-14.DOI: 10.1007/s00382-022-06189-1 .
null
陈斌, 徐祥德, 杨帅, 等, 2012.夏季青藏高原地区近地层水汽进入平流层的特征分析[J].地球物理学报55(2): 406-414.
null
Chen B Xu X D Yang S, et al, 2012.On the characteristics of water vapor transport from atmosphere boundary layer to stratosphere over Tibetan Plateau regions in summer[J].Chinese Journal of Geophysics55(2): 406-414.
null
高登义, 邹捍, 王维, 1985.雅鲁藏布江水汽通道对降水的影响[J].山地学报3(4): 239-249.
null
Gao D Y Zhou H Wang W1985.Influence of water vapor pass alone the Yarlung Zangbo River on precipitation[J].Mountain Research3(4): 239-249.
null
韩熠哲, 马伟强, 王炳赟, 等, 2017.青藏高原近30年降水变化特征分析[J].高原气象36(6): 1477-1486.DOI: 10.7522/j.issn.1000-0534.2016.00125.Han Y Z
null
Ma W Q Wang B Y, et al, 2017.Climatic characteristics of rainfall change over the Qinghai-Tibetan Plateau from 1980 to 2013[J].Plateau Meteorology36(6): 1477-1486.DOF: 10.7522/5.issn.1000-0534. 2016.00125.
null
黄凌昕, 陈婕, 阳坤, 等, 2023.现代青藏高原亚洲夏季风气候北界及其西风区和季风区划分[J].中国科学(地球科学), 53: 1-13.DOI: 10.1360/SSTe-2022-0309.Huang L X
null
Chen J Yang K, et al, 2023.The division of the northern boundary of the modern Asian summer monsoon climate and its westerly and monsoon regions over the Tibetan Plateau[J].Science in China (Earth Sciences), 53: 1-13.DOI: 10.1360/SSTe-2022-0309 .
null
黄荣辉, 陈际龙, 2010.我国东, 西部夏季水汽输送特征及其差异[J].大气科学34(6): 1035-1045.
null
Huang R H Chen J L2010.Characteristics of the summertime water vapor transports over the eastern part of China and those over the western part of China and their difference[J].Chinese Journal of Atmospheric Sciences34(6): 1035-1045.
null
贾宁, 2020.基于HYSPLIT的一次通辽市暴雨水汽输送特征分析[J].农业灾害研究10(5): 111-112.DOI: 10.19383/j.cnki.nyzhyj.2020.05.045.Jia Y , 2020.Analysis of water vapor transport characteristics of a rainstorm in Tongliao City based on HYSPLIT[J].Journal of Agricultural Catastrophology, 10(5): 111-112.DOI: 10.19383/j.cnki.nyzhyj.2020.05.045 .
null
李晓容, 高青云, 付世军, 2020.四川盆地东北部三次持续性暴雨过程水汽输送特征分析[J].暴雨灾害39(3): 234-240.DOI: 10.3969/j.issn.1004-9045.2020.03.003.Li X R
null
Gao Q Y Fu S J2020.Analysis of water vapor transport characteristics of the three persistent rainstorm processes in northeastern Sichuan basin[J].Torrential Rain and Disasters39(3): 234-240.DOI: 10.3969/j.issn.1004-9045.2020.03.003 .
null
李颖, 苏凤阁, 汤秋鸿, 等, 2022.青藏高原主要流域的降水水汽来源[J].中国科学(地球科学)52(7): 1328-1344.DOI: 10. 1360/SSTe-2021-0217.Li Y
null
Su F G Tang Q H, et al, 2022.Contributions of moisture sources to precipitation in the major drainage basins in the Tibetan Plateau[J].Science China (Earth Sciences)65(6): 1088-1103.
null
李朝月, 崔鹏, 郝建盛, 等, 2023.1960年以来藏东南地区气温和降水的变化特征[J].高原气象42(2): 344-358.DOI: 10.7522/ j.issn.1000-0534.2022.00010.Li Z Y
null
Cui P Hao J S, et al, 2023.Variation characteristics of temperature and precipitation over the southeast Xizang since 1960[J].Plateau Meteorology42(2): 344-358.DOI: 10.7522/j.issn.1000-0534.2022.00010 .
null
林振耀, 吴祥定, 1990.青藏高原水汽输送路径的探讨[J].地理研究9(3): 33-40.
null
Lin Z Y Wu X D1990.A preliminary analysis about the tracks of moisture transportation on the Qinghai-Xizang plateau[J].Geographical Research9(3): 33-40.
null
刘凡, 陈华, 2019.热带气旋“Malakas”与中纬度系统的相互作用及其结构变化[J].气象科学39(5): 666-674.Liu F, Chen H, 2019.The interaction of the tropical cyclone “Malakas” interaction with midlatitude flow and its structural change[J].Journal of the Meteorological Sciences, 2019, 39(5): 666-674.
null
刘煜, 刘蓉, 王欣, 等, 2022.基于拉格朗日方法评估青藏高原若尔盖地区水汽输送特征[J].高原气象41(1): 58-67.DOI: 10.7522/j.issn.1000-0534.2021.00100.Liu Y
null
Liu R Wang X, et al, 2022.The characteristics of water vapor transport based on Lagrangian Method in the Zoige, Qinghai-Xizang Plateau[J].Plateau Meteorology41(1): 58-67.DOI: 10.7522/j.issn. 1000-0534.2021.00100 .
null
马梁臣, 孙力, 王宁, 2017.东北地区典型暴雨个例的水汽输送特征分析[J].高原气象36(4): 960-970.DOI: 10.7522/j.issn.1000-0534.2016.00078.Ma L C
null
Sun L Wang N2017.Analysis of water vapor transport characteristics of typical rainstorm cases in Northeast China[J].Plateau Meteorology36(4): 960-970.DOI: 10.7522 /j.issn.1000-0534.2016.00078 .
null
毛文书, 巩远发, 周强, 2009.青藏高原大气热源与江淮梅雨异常的关系[J].高原气象28(6): 1291-1298.
null
Mao S W Gong Y F Zhou Q2009.Relationship between atmospheric heat source in Tibetan Plateau and abnormality of Meiyu in Changjiang-Huaihe River Valley[J].Plateau Meteorology28(6): 1291-1298.
null
孙建华, 汪汇洁, 卫捷, 等, 2016.江淮区域持续性暴雨过程的水汽源地和输送特征[J].气象学报74(4): 14.DOI: 10.11676/ qxxb2016.047.Sun J H
null
Wang H J Wei J, et al, 2016.The sources and transportation of water vapor in persistent heavy rainfall events in the Yangtze Huaihe River Valley[J].Acta Meteorologica Sinica74(4): 14.DOI: 10.11676/ qxxb2016.047 .
null
孙亦, 巩远发, 2019.印度夏季风影响下的青藏高原降水及环流异常变化特征[J].成都信息工程大学学报34(4): 411-419.DOI: 10.16836/j.cnki.jcuit.2019.04.014.Sun Y
null
Gong Y F2019.Characteristics of abnormal changes of precipitation over the Tibetan Plateau and atmospheric circulation under the influence of Indian summer monsoon[J].Journal of Chengdu University of Information34(4): 411-419.DOI: 10.16836/j.cnki.jcuit.2019.04.014 .
null
吴佳, 吴婕, 闫宇平, 2022.1961-2020年青藏高原地表风速变化及动力降尺度模拟评估[J].高原气象41(4): 963-976.DOI: 10.7522/j.issn.1000-0534.2022.00065.Wu J
null
Wu J Yan Y P2022.Changes of surface wind speed over Qinghai-Xizang Plateau from 1961 to 2020 and evaluation of the dynamical downscaling simulations[J].Plateau Meteorology41(4): 963-976.DOI: 10.7522/j.issn.1000-0534.2022.00065 .
null
许建伟, 高艳红, 彭保发, 等, 2020.1979-2016年青藏高原降水的变化特征及成因分析[J].高原气象39(2): 234-244.DOI: 10.7522/j.issn.1000-0534.2019.00029.Xu J W
null
Gao Y H Peng B F, et al, 2020.Change characteristics of precipitation and its cause during 1979-2016 over the Qinghai-Tibetan Plateau[J].Plateau Meteorology39(2): 234-244.DOI: 10.7522/j.issn.1000-0534.2019.00029 .
null
徐祥德, 赵天良, 施晓晖, 2014.青藏高原大气水分循环特征[J].气象学报72(6): 1079-1095.DOI: 10.11676/qxxb2014.091.Xu X D
null
Zhao T L Shi X H2014.Characteristics of the water cycle in the atmosphere over the Tibetan Plateau[J].Acta Meteorologica Sinica72(6): 1079-1095.DOI: 10.11676/qxxb2014. 091 .
null
杨逸畴, 高登义, 李渤生, 1987.雅鲁藏布江下游河谷水汽通道初探[J].中国科学(化学)17(8): 893-902.DOI: 10.1360/zb1987-17-8-893.Yang Y C
null
Gao D Y Li B S1987.Preliminary study on water vapor channel in the lower Brahmaputra River Valley[J].Science China (Chimica)17(8): 893-902.DOI: 10.1360/zb1987-17-8-893 .
null
叶笃正, 杨广基, 王兴东, 1979.东亚和太平洋上空平均垂直环流 ——(一)夏季[J].大气科学3(1): 1-11.
null
Ye D Z Yang G J Wang X D1979.The average vertical circulations over the east-asia and the pacific area, (i) in summer[J].Chinese Journal of Atmospheric Sciences3(1): 1-11.
null
张天义, 邢永强, 张璋, 等, 2009.雅鲁藏布河谷水汽通道效应分析及开发设想[J].地域研究与开发28(1): 120-123.
null
Zhang T Y Xing Y Q Zhang Z, et al, 2009.The effect analysis of Yalu Tsangpu River water vapor channel and its development assumption[J].Areal Research and Development28(1): 120-123.
null
张文霞, 张丽霞, 周天军, 2016.雅鲁藏布江流域夏季降水的年际变化及其原因[J].大气科学40(5): 965-980.DOI: 10.3878/ j.issn.1006-9895.1512.15205.Zhang W X
null
Zhang L X Zhou T J2016.Interannual variability and the underlying mechanism of summer precipitation over the Yarlung Zangbo River basin[J].Chinese Journal of Atmospheric Sciences40(5): 965-980.DOI: 10.3878/ j.issn.1006-9895.1512.15205 .
null
曾钰婷, 张宇, 周可, 等, 2020.青藏高原那曲地区夏季水汽来源及输送特征分析[J].高原气象39(3): 467-476.DOI: 10.7522/j.issn.1000-0534.2019.00120.Zeng Y T
null
Zhang Y Zhou K, et al, 2020.Analysis on the source and transport characteristics of moisture in Naqu of the Qinghai-Tibetan Plateau in summer[J].Plateau Meteorology39(3): 467-476.DOI: 10.7522/j.issn. 1000-0534.2019.00120 .
null
郑新江, 许健民, 李献洲, 1997.夏季青藏高原水汽输送特征[J].高原气象16(3): 274-281.
null
Zheng X M Xu J M Li X Z1997.Characteristics of water vapors transfer in upper troposphere over Qinghai-Xizang Plateau in summer[J].Plateau Meteorology16(3): 274-281.
null
周天军, 高晶, 赵寅, 等, 2019.影响“亚洲水塔”的水汽输送过程[J].中国科学院院刊34(11): 1210-1219.DOI: 10.16418/j.issn.1000-3045.2019.11.004.Zhou T J
null
Gao J Zhao Y, et al, 2019.Water vapor transport processes on Asian water tower[J].Bulletin of Chinese Academy of Sciences34(11): 1210-1219.DOI: 10.16418/j.issn.1000-3045.2019 .
文章导航

/