利用轨迹追踪法研究雅鲁藏布江大峡谷区域水汽输送减少的成因
收稿日期: 2022-11-26
修回日期: 2023-05-02
网络出版日期: 2024-01-11
基金资助
中国科学院战略性先导科技专项(XDA2006010301); 国家自然科学基金项目(42275073)
Analysis of Water Vapor Transport Reduction in the Yarlung Tsangpo Grand Canyon Region: a Trajectory Tracking Approach
Received date: 2022-11-26
Revised date: 2023-05-02
Online published: 2024-01-11
雅鲁藏布江大峡谷区域作为高原的主要水汽输送入口, 自1979年至今水汽通量辐合及降水量呈持续减少趋势, 这对高原水储量具有重要影响。为了探究该区域水汽输送减少的原因, 本文利用ERA5逐小时再分析资料驱动LAGRANTO模型, 选取典型干旱年份和湿润年份的夏季(6 -8月), 后向追踪该区域的水汽输送轨迹, 对沿轨迹输送的水汽通量变化进行对比分析。研究发现, 源自洋面的水汽主要来自高原南部的孟加拉湾, 高原西南侧的阿拉伯海, 赤道以南的印度洋以及南中国海四个区域, 水汽输送主要受南亚和印度夏季风控制, 并受索马里跨赤道急流影响。通过对比分析干、 湿年份的水汽输送轨迹的特征, 发现干湿年轨迹路径除南海源地外基本不变, 轨迹上水汽通量随轨迹高度抬升而减少, 且湿润年的损耗始终低于干旱年, 其中孟加拉湾源地的轨迹得到洋面的水汽补充, 在湿润年水汽通量有较强的增长。干湿年份的蒸发、 降水、 环流场形势的对比也佐证了这一发现。最终湿润年到达雅鲁藏布江峡谷边界的水汽通量大于干旱年, 尤其是经由雅鲁藏布江峡谷区域南边界进入的水汽通量显著增大, 这表明, 除源地水汽贡献和大尺度季风环流影响外, 水汽输送途中的降水损耗相关过程对雅鲁藏布江峡谷区域水汽收支具有决定性作用。
关键词: 青藏高原; 水汽输送轨迹; LAGRANTO模式; 后向追踪
张登旭 , 阎虹如 , 苗云飞 , 张敏 . 利用轨迹追踪法研究雅鲁藏布江大峡谷区域水汽输送减少的成因[J]. 高原气象, 2024 , 43(1) : 114 -126 . DOI: 10.7522/j.issn.1000-0534.2023.00050
The Yarlung Tsangpo River Grand Canyon region serves as a main water vapor entrance for the Tibetan plateau.However, the region has been experiencing a persistent decline in both water vapor convergence and precipitation since 1979, which has an important impact on the water storage over the Tibetan Plateau.In order to investigate the reasons behind this reduction in water vapor transport in the area, ERA5 hourly reanalysis data were utilized to drive the LAGRANTO model to derive the backwards water vapor transport trajectories in the region during the boreal summer (June to August) of typical dry and wet years, facilitating a comparative analysis of alterations in moisture flux along these trajectories.It was found that the water vapor sources primarily originating from four oceanic regions: the Bay of Bengal in the southern plateau, the Arabian Sea on the southwest side of the plateau, the Indian Ocean around south of the equator, and the South China Sea.The water vapor transportation in these regions is predominantly governed by the South Asian and Indian summer monsoons and influenced by the Somalia cross-equatorial jet.By comparing the characteristics of water vapor transport trajectories in dry and wet years, it is evident that trajectory patterns remain largely unchanged, with the exception of the South China Sea source.Furthermore, moisture flux along these trajectories diminishes as elevation increases, and the moisture loss during wet years consistently proves to be lower than that during dry years.Additionally, the trajectories originating from the Bay of Bengal source are supplemented by water vapor from the ocean surface, resulting in significant increased water vapor flux in wet years.This finding is supported by comparing the evaporation, precipitation, and circulation fields between dry and wet years.Ultimately, during wet years, the moisture flux reaching the boundaries of the Yarlung Tsangpo Grand Canyon region surpasses that of dry years, notably marked by a particularly significant increase in moisture entering through the southern boundary.This highlights that the depletion processes during water vapor transport, in addition to contributions from moisture sources and the influence of large-scale monsoonal circulation, play a critical role in determining the moisture equilibrium within the Yarlung Tsangpo Grand Canyon region.
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | 陈斌, 徐祥德, 杨帅, 等, 2012.夏季青藏高原地区近地层水汽进入平流层的特征分析[J].地球物理学报, 55(2): 406-414. |
null | |
null | 高登义, 邹捍, 王维, 1985.雅鲁藏布江水汽通道对降水的影响[J].山地学报, 3(4): 239-249. |
null | |
null | 韩熠哲, 马伟强, 王炳赟, 等, 2017.青藏高原近30年降水变化特征分析[J].高原气象, 36(6): 1477-1486.DOI: 10.7522/j.issn.1000-0534.2016.00125.Han Y Z , |
null | |
null | 黄凌昕, 陈婕, 阳坤, 等, 2023.现代青藏高原亚洲夏季风气候北界及其西风区和季风区划分[J].中国科学(地球科学), 53: 1-13.DOI: 10.1360/SSTe-2022-0309.Huang L X , |
null | |
null | 黄荣辉, 陈际龙, 2010.我国东, 西部夏季水汽输送特征及其差异[J].大气科学, 34(6): 1035-1045. |
null | |
null | 贾宁, 2020.基于HYSPLIT的一次通辽市暴雨水汽输送特征分析[J].农业灾害研究, 10(5): 111-112.DOI: 10.19383/j.cnki.nyzhyj.2020.05.045.Jia Y , 2020.Analysis of water vapor transport characteristics of a rainstorm in Tongliao City based on HYSPLIT[J].Journal of Agricultural Catastrophology, 10(5): 111-112.DOI: 10.19383/j.cnki.nyzhyj.2020.05.045 . |
null | 李晓容, 高青云, 付世军, 2020.四川盆地东北部三次持续性暴雨过程水汽输送特征分析[J].暴雨灾害, 39(3): 234-240.DOI: 10.3969/j.issn.1004-9045.2020.03.003.Li X R , |
null | |
null | 李颖, 苏凤阁, 汤秋鸿, 等, 2022.青藏高原主要流域的降水水汽来源[J].中国科学(地球科学), 52(7): 1328-1344.DOI: 10. 1360/SSTe-2021-0217.Li Y , |
null | |
null | 李朝月, 崔鹏, 郝建盛, 等, 2023.1960年以来藏东南地区气温和降水的变化特征[J].高原气象, 42(2): 344-358.DOI: 10.7522/ j.issn.1000-0534.2022.00010.Li Z Y , |
null | |
null | 林振耀, 吴祥定, 1990.青藏高原水汽输送路径的探讨[J].地理研究, 9(3): 33-40. |
null | |
null | 刘凡, 陈华, 2019.热带气旋“Malakas”与中纬度系统的相互作用及其结构变化[J].气象科学, 39(5): 666-674.Liu F, Chen H, 2019.The interaction of the tropical cyclone “Malakas” interaction with midlatitude flow and its structural change[J].Journal of the Meteorological Sciences, 2019, 39(5): 666-674. |
null | 刘煜, 刘蓉, 王欣, 等, 2022.基于拉格朗日方法评估青藏高原若尔盖地区水汽输送特征[J].高原气象, 41(1): 58-67.DOI: 10.7522/j.issn.1000-0534.2021.00100.Liu Y , |
null | |
null | 马梁臣, 孙力, 王宁, 2017.东北地区典型暴雨个例的水汽输送特征分析[J].高原气象, 36(4): 960-970.DOI: 10.7522/j.issn.1000-0534.2016.00078.Ma L C , |
null | |
null | 毛文书, 巩远发, 周强, 2009.青藏高原大气热源与江淮梅雨异常的关系[J].高原气象, 28(6): 1291-1298. |
null | |
null | 孙建华, 汪汇洁, 卫捷, 等, 2016.江淮区域持续性暴雨过程的水汽源地和输送特征[J].气象学报, 74(4): 14.DOI: 10.11676/ qxxb2016.047.Sun J H , |
null | |
null | 孙亦, 巩远发, 2019.印度夏季风影响下的青藏高原降水及环流异常变化特征[J].成都信息工程大学学报, 34(4): 411-419.DOI: 10.16836/j.cnki.jcuit.2019.04.014.Sun Y , |
null | |
null | 吴佳, 吴婕, 闫宇平, 2022.1961-2020年青藏高原地表风速变化及动力降尺度模拟评估[J].高原气象, 41(4): 963-976.DOI: 10.7522/j.issn.1000-0534.2022.00065.Wu J , |
null | |
null | 许建伟, 高艳红, 彭保发, 等, 2020.1979-2016年青藏高原降水的变化特征及成因分析[J].高原气象, 39(2): 234-244.DOI: 10.7522/j.issn.1000-0534.2019.00029.Xu J W , |
null | |
null | |
null | |
null | 杨逸畴, 高登义, 李渤生, 1987.雅鲁藏布江下游河谷水汽通道初探[J].中国科学(化学), 17(8): 893-902.DOI: 10.1360/zb1987-17-8-893.Yang Y C , |
null | |
null | 叶笃正, 杨广基, 王兴东, 1979.东亚和太平洋上空平均垂直环流 ——(一)夏季[J].大气科学, 3(1): 1-11. |
null | |
null | 张天义, 邢永强, 张璋, 等, 2009.雅鲁藏布河谷水汽通道效应分析及开发设想[J].地域研究与开发, 28(1): 120-123. |
null | |
null | 张文霞, 张丽霞, 周天军, 2016.雅鲁藏布江流域夏季降水的年际变化及其原因[J].大气科学, 40(5): 965-980.DOI: 10.3878/ j.issn.1006-9895.1512.15205.Zhang W X , |
null | |
null | 曾钰婷, 张宇, 周可, 等, 2020.青藏高原那曲地区夏季水汽来源及输送特征分析[J].高原气象, 39(3): 467-476.DOI: 10.7522/j.issn.1000-0534.2019.00120.Zeng Y T , |
null | |
null | 郑新江, 许健民, 李献洲, 1997.夏季青藏高原水汽输送特征[J].高原气象, 16(3): 274-281. |
null | |
null | 周天军, 高晶, 赵寅, 等, 2019.影响“亚洲水塔”的水汽输送过程[J].中国科学院院刊, 34(11): 1210-1219.DOI: 10.16418/j.issn.1000-3045.2019.11.004.Zhou T J , |
null |
/
〈 |
|
〉 |