论文

基于机器学习的中国夏季降水延伸期预报及土壤湿度的可能贡献

  • 叶宇辰 ,
  • 陈海山 ,
  • 朱司光 ,
  • 董寅硕
展开
  • 1. 南京信息工程大学气象灾害预报预警与评估协同创新中心/气象灾害教育部重点实验室,江苏 南京 210044
    2. 南京信息工程大学大气科学学院,江苏 南京 210044

叶宇辰(1998 -), 男, 河南新乡人, 硕士研究生, 主要从事陆气相互作用及机器学习在气象中的应用研究 E-mail:

收稿日期: 2023-01-05

  修回日期: 2023-03-22

  网络出版日期: 2024-01-11

基金资助

国家自然科学基金基础科学中心项目(42088101)

Machine Learning-Based Prediction of Summer Extended-Range Precipitation and Possible Contribution of Soil Moisture over China

  • Yuchen YE ,
  • Haishan CHEN ,
  • Siguang ZHU ,
  • Yinshuo DONG
Expand
  • 1. Key Laboratory of Meteorological Disaster,Ministry of Education (KLME)/Joint International Research Laboratory of Climate and Environment Change (ILCEC)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD),Nanjing University of Information Science and Technology (NUIST),Nanjing 210044,Jiangsu,China
    2. School of Atmospheric Sciences,Nanjing University of Information Science and Technology (NUIST),Nanjing 210044,Jiangsu,China

Received date: 2023-01-05

  Revised date: 2023-03-22

  Online published: 2024-01-11

摘要

延伸期预报准确率较低的问题仍然是目前重要的科学难题, 做好延伸期预报对防灾减灾具有重要意义。本文利用机器学习方法开展了中国夏季降水延伸期(5~30天)预报试验, 并探讨了土壤湿度对降水延伸期预报的可能贡献。结果表明机器学习方法的预报结果准确率要比传统线性模型方法有较大改善, 且在诸多机器学习方法中, 以Catboost, Lightgbm和Adaboost三个机器学习模型为最优。进一步分析发现长江流域表层土壤湿度异常导致的蒸发异常和感热异常, 能够引起大气环流和垂直运动异常, 最终对夏季降水产生影响。使用三个最优的机器学习方法的集合计算出模型中各个预报因子的贡献率, 发现在长江流域的延伸期降水中, 局地土壤湿度主要在5~10天占主导作用, 而前期降水主要在10~15天占主导作用, 长江流域20~30天的延伸期降水基本上受到大尺度环流控制。还评估了非局地土壤湿度在延伸期降水中的作用, 发现中南半岛表层土壤湿度主要对15~30天的长江流域延伸期降水有重要贡献。将中南半岛表层土壤湿度加入到东北地区延伸期降水模型中, 发现对该地区延伸期降水预报准确率并无提升作用, 验证了机器学习模型的可用性。该研究为延伸期降水预测以及探究预报因子贡献率提供了一定的参考。

本文引用格式

叶宇辰 , 陈海山 , 朱司光 , 董寅硕 . 基于机器学习的中国夏季降水延伸期预报及土壤湿度的可能贡献[J]. 高原气象, 2024 , 43(1) : 184 -198 . DOI: 10.7522/j.issn.1000-0534.2023.00025

Abstract

Low accuracy of extended forecast remains an important scientific problem in the current stage, and qualified extended forecast is of great significance for disaster prevention and mitigation.In this study, the machine learning method was used to forecast the summer precipitation during the extension period (5~30 days) in China, and explore the possible contribution of soil moisture to extended forecast of precipitation.Based on the results, machine learning methods remarkably outweigh traditional linear models in terms of forecast accuracy, with Catboost, Lightgbm and Adaboost being the optimal machine learning methods.According to further analysis, the abnormal evaporation and sensible heat anomaly caused by the surface soil moisture anomaly in the Yangtze River Basin can lead to the atmospheric circulation and vertical movement anomaly, which eventually affects summer precipitation.The set of three optimal machine learning methods was applied to calculate the contribution rate of each forecasting factor in the model.It was found that the local soil moisture dominated the extended precipitation in the Yangtze River Basin from the 5th day to the 10th day, while the local soil moisture played a dominant role on previous precipitation from the 10th day to the 15th day, and the extended precipitation in the Yangtze River Basin during the period of Day 20~30 was basically controlled by large-scale circulation.Besides, the influence of non-local soil moisture on extended precipitation was evaluated, the results of which showed that the surface soil moisture in Indo-China Peninsula mainly contributed to the extended precipitation in the Yangtze River Basin from the 15th day to the 30th day.By adding the surface soil moisture of Indo-China Peninsula to the extended precipitation model in Northeast China, it was found that surface the soil moisture failed to improve the extended forecast accuracy of precipitation in this area, which verified the availability of the machine learning model.This study provides a certain reference for forecasting precipitation in the extended period and exploring the contribution rate of forecasting factors.

参考文献

null
Breiman L1996.Bagging predictors[J].Machine Learning24(2): 123-140.DOI: 10.1023/A: 1018054314350 .
null
Breiman L2001.Random forests[J].Machine Learning45(1): 5-32.DOI: 10.1023/A: 1010933404324 .
null
Buchmann J Buja L E Paegle J, et al, 1995.Further experiments on the effect of tropical atlantic heating anomalies upon GCM rain forecasts over the Americas[J].Journal of Climate8(5): 1235-1244.DOI: 10.1175/1520-0442(1995)008 <1235: FEOTEO>2.0.CO; 2 .
null
Butterworth S1930.On the theory of filter amplifiers[J].Wireless Engineer, 7: 536-541.
null
Chelliah M Arkin P1992.Large-scale interannual variability of monthly outgoing longware radiation anomalies over the global tropics[J].Journal of Climate, 5: 371-389.DOI: 10.1175/1520-0442(1992)005<0371: LSIVOM>2.0.CO; 2 .
null
Chen M Y Shi W Xie P P, et al, 2008.Assessing objective techniques for gauge-based analyses of global daily precipitation[J].Journal of Geophysical Research: Atmospheres, 113: D04110.DOI: 10.1029/2007JD009132 .
null
Chen T Q Guestrin C2016.XGBoost: a scalable tree boosting system[J].ACM, 2016: 785-794.DOI: 10.1145/2939672.2939785 .
null
Chou S C Nunes A Cavalcanti I2000.Extended range forecasts over South America using the regional eta model[J].Journal of Geophysical Research: Atmospheres105(D8): 10147-10160.DOI: 10.1029/1999JD901137 .
null
Dirmeyer P A Schlosser C A Brubaker K L2009.Precipitation, recycling, and land memory: an integrated analysis[J].Journal of Hydrometeorology, 10: 278-288.DOI: 10.1175/2008JHM1016.1 .
null
Donald A Meinke H Power B, et al, 2006.Near-global impact of the Madden-Julian Oscillation on rainfall[J].Geophysical Research Letters, 33: L09704.DOI: 10.1029/2005GL025155 .
null
Dong X Chen H S Zhou Y, et al, 2022.Local and nonlocal atmospheric effects of abnormal soil moisture over Indochina during May-June.[J].Quarterly Journal of the Royal Meteorological Society148(747): 2903-2926.DOI: 10.1002/qj.4341 .
null
Dong Y S Chen H S Dong X2023.Impact of antecedent soil moisture anomalies over the Indochina Peninsula on the Super Mei-yu Event in 2020[J].Journal of Meteorological Research54(9/10): 3845-3861.DOI: 10.1007/s13351-023-2144-4 .
null
Dorogush A V Ershov V Gulin A2018.CatBoost: gradient boosting with categorical features support[J].ArXiv, 2018: 1-7.DOI: 10.48550/arXiv.1810.11363 .
null
Freund Y Schapire R E1997.A decision-theoretic generalization of on-line learning and an application to boosting[J].Journal of Computer and System Sciences55(1): 119-139.DOI: 10. 1006/jcss.1997.1504 .
null
Ham J Chen Y C Crawford M M, et al, 2005.Investigation of the random forest framework for classification of hyperspectral data[J].IEEE Transactions on Geoscience and Remote Sensing43(3): 492-501.DOI: 10.1109/TGRS.2004.842481 .
null
Hersbach H Bell B Berrisford P, et al, 2019.ERA5 monthly averaged data on pressure levels from 1959 to present[DB].Copernicus Climate Change Serv-ice (C3S) Climate Data Store (CDS).DOI: 10.24381/cds.6860a573 .
null
Hsu P C Lee J Y Ha K J2016.Influence of boreal summer intraseasonal oscillation on rainfall extremes in southern China[J].International Journal of Climatology36(3): 1403-1412.DOI: 10. 1002/joc.4433 .
null
Hsu P C Li T You L, et al, 2015.A spatial-temporal projection model for 10-30 day rainfall forecast in South China[J].Climate Dynamics44(5/6): 1227-1244.DOI: 10.1007/s00382-014-2215-4 .
null
Ke G L Qi M Thomas F2017.LightGBM: a highly efficient gradient boosting decision tree[C]//Ulrike V L, Isabelle G, eds.Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS' 17).California: Curran Associates Inc., 3149-3157.DOI: 10.5555/3294996.3295074 .
null
Kim D Sperber K Stern W, et al, 2009.Application of MJO simulation diagnostics to climate models[J].Journal of Climate22(23): 6413-6436.DOI: 10.1175/2009JCLI3063.1 .
null
Koster R D Mahanama S P P Yamada T J, et al, 2011.The second phase of the global land-atmosphere coupling experiment: soil moisture contributions to subseasonal forecast skill[J].Journal of Hydrometeorology12(5): 805-822.DOI: 10.1175/2011JHM1365.1 .
null
Krishnamurthy V2019.Predictability of weather and climate[J].Earth and Space Science6(3): 1043-1056.DOI: 10.1029/2019EA000586 .
null
Liu L Zhang R H Zuo Z Y2017.Effect of spring precipitation on summer precipitation in Eastern China: role of soil moisture[J].Journal of Climate30(22): 9183-9194.DOI: 10.1175/JCLI-D-17-0028.1 .
null
Lorenz E N1963.Deterministic nonperiodic flow[J].Journal of Atmospheric Sciences, 20: 130-148.DOI: 10.1175/1520-0469(1963)020<0130: DNF>2.0.CO; 2 .
null
Machado M R Karray S Sousa I T D2019.LightGBM: an effective decision tree gradient boosting method to predict customer loyalty in the finance industry[C]//Machado M R, et al, eds.2019 14th International Conference on Computer Science & Education (ICCSE).Toronto: IEEE, 1111-1116.DOI: 10.1109/ICCSE.2019.8845529 .
null
Mariana B Lucian D2016.Random forest in remote senfsing: a review of applications and future directions[J].ISPRS Journal of Photogrammetry and Remote Sensing, 114: 24-31.DOI: 10. 1016/j.isprsjprs.2016.01.011 .
null
Masutani M Hoskins B1991.Tropical extratropical interaction associated with the 30-60 day oscillation[C]//Masutani M, Hoskins B, eds.Fifth Conference on Climate Variation.Denber: AMS, 1-4.
null
Mu?oz S J2019.ERA5-Land hourly data from 1950 to present.[DB/OL].(2023-01-01)[2023-01-03].dataset/reanalysis-era5-land.
null
Palmer T N Brankovic C Molteni F, et al, 1990.The European Centre for Medium-Range Weather Forecasts (ECMWF) program on extended-range prediction[J].Bulletin of the American Meteorological Society71(9): 1317-1330.DOI: 10.1175/1520-0477(1990)071<1317: TECFMR>2.0.CO; 2 .
null
Pan B Hsu K Aghakouchak A, et al, 2018.Precipitation prediction skill for west coast United States from short to extended range[J].Journal of Climate32(1): 161-182.DOI: 10.1175/JCLI-D-18-0355.1 .
null
Peng T Zhi X F Ji Y, et al, 2020.Prediction skill of extended range 2-m maximum air temperature probabilistic forecasts using machine learning post-processing methods[J].Atmosphere11(8): 823-839.DOI: 10.3390/atmos11080823 .
null
Qi Y J2012.Random forest for bioinformatics[J].Ensemble Machine Learning, 2012: 307-323.DOI: 10.1007/978-1-4419-9326-7_11 .
null
Quinlan J R1979.Discovering rules by induction from large collections of examples[J].Expert Systems in the Micro Electronics Age2(9): 168-201.
null
Raghav P Borkotoky S S Joseph J, et al, 2020.Revamping extended range forecast of Indian summer monsoon[J].Climate Dynamics55(11): 3397-3411.DOI: 10.1007/s00382-020-05454-5 .
null
Roberts J Roberts T D1978.Use of the Butterworth low‐pass filter for oceanographic data[J].Journal of Geophysical Research: Oceans, 1978, 83(C11): 5510-5514.DOI: 10.1029/JC083iC11p05510 .
null
Sahin E K2020.Assessing the predictive capability of ensemble tree methods for landslide susceptibility mapping using XGBoost, gradient boosting machine, and random forest[J].SN Applied Sciences2(7): 1-17.DOI: 10.1007/s42452-020-3060-1 .
null
Schapire R E1990.The strength of weak learnability[J].Machine Learning5(2): 197-227.DOI: 10.1007/BF00116037 .
null
Seneviratne S I Corti T Davin E L, et al, 2010.Investigating soil moisture-climate interactions in a changing climate: a review[J].Earth-Science Reviews99(3/4): 125-161.DOI: 10.1016/j.earscirev.2010.02.004 .
null
Su H Dickinson R E2017.On the spatial gradient of soil moisture-precipitation feedback strength in the 2011 April drought in the Southern Great Plains[J].Journal of Climate30(3): 829-848.DOI: 10.1175/JCLI-D-13-00185.1 .
null
Su H Zong L Y Dickinson R E, et al, 2014.Spring soil moisture‐precipitation feedback in the Southern Great Plains: How is it related to large‐scale atmospheric conditions?[J].Geophysical Research Letters41(4): 1283-1289.DOI: 10.1002/2013GL058931 .
null
Wadoux J C Brus D J Heuvelink G2019.Sampling design optimization for soil mapping with random forest[J].Geoderma, 2019, 355(1): 113913.DOI: 10.1016/j.geoderma.2019.113913 .
null
Wei J F Hua S Yang Z L2015.Impact of moisture flux convergence and soil moisture on precipitation: a case study for the southern United States with implications for the globe[J].Climate Dynamics46(1/2): 1-15.DOI: 10.1007/s00382-015-2593-2 .
null
White C J Carlsen H Robertson A W, et al, 2017.Potential applications of subseasonal-to-seasonal (S2S) predictions[J].Meteorological Applications24(1): 315-325.DOI: 10.1002/met.1654 .
null
Wu W R Geller M A Dickinson R E2002.The response of soil moisture to long-term variability of precipitation[J].Journal of Hydrometeorology3(5): 604-613.DOI: 10.1175/1525-7541(2002)003<0604: TROSMT>2.0.CO; 2 .
null
Xavier P K2003.Extended range predictability and prediction of indian summer monsoon[J].Geophysical Research Letters30(18): 1966.
null
Xia Z Y Chen H B Xu L S, et al, 2015.Extended range (10-30 days) heavy rain forecasting study based on a nonlinear cross-prediction error model[J].Advances in Atmospheric Sciences32(12): 1583-1591.DOI: 10.1007/s00376-015-4252-2 .
null
Xie P P Chen M Y Song Y, et al, 2007.A gauge-based analysis of daily precipitation over East Asia[J].Journal of Hydrometeorology, 8: 607-626.DOI: 10.1175/JHM583.1 .
null
Xin Q Yang J2019.Extended-range prediction of a heat wave event over the Yangtze River Valley: role of intraseasonal signals[J].Atmospheric and Oceanic Science Letters12(6): 451-457.DOI: 10.1080/16742834.2019.1669408 .
null
Yang K Wang C H Bao H Y2016.Contribution of soil moisture variability to summer precipitation in the Northern Hemisphere[J].Journal of Geophysical Research Atmospheres121(20): 108-124.DOI: 10.1002/2016JD025644 .
null
Zhang L N Wang B Z Zeng Q C2009.Impacts of the Madden-Julian Oscillation on summer rainfall in Southeast China[J].Journal of Climate22(2): 201-216.DOI: 10.1175/2008JCLI1959.1 .
null
Zheng H Wu Y H2019.A XGBoost Model with weather similarity analysis and feature engineering for short-term wind power forecasting[J].Applied Sciences9(15): 3019-3030.DOI: 10. 3390/app9153019 .
null
Zhu S G Qi Y J Chen H S, et al, 2021.Distinct impacts of spring soil moisture over the Indo-China Peninsula on summer precipitation in the Yangtze River basin under different SST backgrounds[J].Climate Dynamics, 56: 1895-1918.DOI: 10.1007/s00382-020-05567-x .
null
Zhu Z W Li T2017a.Extended-range forecasting of Chinese summer surface air temperature and heat waves[J].Climate Dynamics50(2): 1-15.DOI: 10.1007/s00382-017-3733-7 .
null
Zhu Z W Li T2017b.Statistical extended‐range forecast of winter surface air temperature and extremely cold days over China[J].Quarterly Journal of the Royal Meteorological Society143(704): 1528-1538.DOI: 10.1002/qj.3023 .
null
Zhu Z W Li T2017c.The statistical extended-range (10-30-day) forecast of summer rainfall anomalies over the entire China[J].Climate Dynamics48(1): 209-224.DOI: 10.1007/s00382-016-3070-2 .
null
贾何佳, 李谢辉, 王磊, 等, 2022.基于机器学习的西南地区遥感干旱监测与评估[J].高原气象41(6): 1572-1582.DOI: 10.7522/j.issn.1000-0534.2022.00006.Jia H J
null
Li X H Wang L, et al, 2022.Remote sensing drought monitoring and assessment in southwestern China based on machine learning[J].Plateau Meteorology41(6): 1572-1582.DOI: 10.7522/j.issn. 1000-0534.2022.00006 .
null
孙国武, 信飞, 孔春燕, 等, 2010.大气低频振荡与延伸期预报[J].高原气象29(5): 1142-1147.
null
Sun G W Xin F Kong C Y, et al, 2010.Atmospheric low-frequency oscillation and extended range forecast[J].Plateau Meteorology29(5): 1142-1147.
null
谭晓晴, 罗斯琼, 舒乐乐, 等, 2022.基于机器学习的土壤温度预估研究综述[J].高原气象41(2): 268-281.DOI: 10.7522/j.issn.1000-0534.2022.00024.Tan X Q
null
Luo S Q Shu L L, et al, 2022.A review of soil temperature estimation research based on machine learning[J].Plateau Meteorology41(2): 268-281.DOI: 10.7522/j.issn.1000-0534.2022.00024 .
null
游佳慧, 2015.MJO的基本特征重构及其与我国降水影响的因果分析[D].南京: 南京信息工程大学.You J H, 2015.MJO: Its propertiy reconstruction and casual influences on the precipitation over China[D].Nanjing: Nanjing University of Information Science & Technology.
null
岳小媛, 2020.天山夏季降水年代际和年际变化的影响因子研究[D].北京: 中国气象科学研究院.Yue X Y, 2020.Research on the factors regulating summer precipitation over the Tianshan Mountains on interdecadal and interannual time scales[D].Beijing: Chinese Academy of Meteorological Sciences.
文章导航

/