向下短波辐射差异对草甸化草原地表辐射平衡的影响
收稿日期: 2022-09-30
修回日期: 2023-04-10
网络出版日期: 2024-01-11
基金资助
青海省科技厅应用基础研究项目(2023-ZJ-737); 国家自然科学基金项目(42165014)
Effect of Downward Shortwave Radiation Difference on the Surface Radiation Balance of Meadow Grassland
Received date: 2022-09-30
Revised date: 2023-04-10
Online published: 2024-01-11
基于向下短波辐射分位数, 对中国气象局海北牧业试验站2014年9月至2020年12月四分量辐射观测数据按月进行分组。分析了向下短波辐射差异对草甸化草原辐射平衡的影响, 为明晰不同光照条件下辐射平衡变化和成因提供了依据。结果表明: 在相同月份中, 不同光照条件下地表接收的向下短波辐射呈现出极显著的对数变化趋势, 组间差异超过了季节之间的差异。不同光照条件下向上短波辐射和大气长波辐射也表现出较大差异, 其中大气长波辐射差异主要与空气湿度以及云量差异有关。随光照条件的增加, 地表接收的净短波辐射增多, 支出净长波辐射也增多。所以不同光照条件下净全辐射与向下短波辐射的比例相差不大。不过, 光照条件差异会对向下短波辐射与净全辐射的关系模型产生影响。
李甫 , 周秉荣 , 王力 , 马文哲 , 霍金虎 . 向下短波辐射差异对草甸化草原地表辐射平衡的影响[J]. 高原气象, 2024 , 43(1) : 217 -226 . DOI: 10.7522/j.issn.1000-0534.2023.00035
Based on the 20%, 40%, 60% and 80% quantiles of the daily cumulative energy of downward shortwave radiation, the four-component radiation observation data observed by the Haibei Animal Husbandry Experimental Station of China Meteorological Administration from September 2014 to December 2020 were divided into five groups.The influence of difference in downward shortwave radiation on the radiation balance of meadow grassland has been analyzed, which provided a basis for clarifying the changes and causes of radiation balance under different sunlight conditions.The results show that the downward shortwave radiation energy in the whole year is 8192.9 MJ·m-2·a-1, which can be theoretically received under the condition of abundant sunlight.Under normal sunlight, it is only 80% of that in the condition of abundant sunlight, while this proportion is only 40% under the condition of less sunlight.The downward shortwave radiation received by the surface under different sunlight conditions showes a very significant logarithmic increase trend in the same month, and the difference between the groups exceeds the difference between different season.There are also large differences between the groups of upward shortwave radiation and atmospheric longwave radiation.However, the upward shortwave radiation increases with the increase of solar radiation, due to the change of air humidity and cloudiness, while the atmospheric longwave radiation decreases with the increase of solar radiation.The variation of surface longwave radiation under different sunlight conditions is small, and does not exceed 3%.Although the difference in surface longwave radiation is not significant between the three sunlight conditions, due to the small amount of downward shortwave radiation received under the condition of less sunlight, the surface longwave radiation is 3.4 times more than the downward shortwave radiation, while it is only 1.4 and 1.7 times under the other two lighting conditions.As the increase of sunlight, the net shortwave radiation received by the surface increases, and the net longwave radiation also increases.Therefore, the energy absorbed by the radiation under different sunlight conditions accounts for 36% to 39% of the downward shortwave radiation energy received in each case.In addition, the difference of sunlight conditions also affect the linear regression model between downward shortwave radiation and net total radiation.The coefficient of determination and slope of the relationship model are the smallest under the condition of less sunlight.The coefficient of determination of the relationship model are above 0.85 for both normal and abundant sunlight.However, the slope is 1 when the sunlight is normal, while the slope is 0.87 when the sunlight is abundant.
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | 陈雪, 2021.2013-2019年兰州市城市环境空气质量变化趋势研究[D].兰州: 兰州大学.DOI: 10.27204/d.cnki.glzhu.2021. 002555.Chen X, 2021.Study on the variation trend of ambient air quality in Lanzhou from 2013 to 2019[D].Lanzhou: Lanzhou University.DOI: 10.27204/d.cnki.glzhu.2021.002555 . |
null | 卞林根, 陆龙骅, 逯昌贵, 等, 2001.1998年夏季青藏高原辐射平衡分量特征[J].大气科学, 25(5): 577-588. |
null | |
null | 丁立国, 申彦波, 马勋丹, 等, 2022.FY-4A地面太阳辐射产品在贵州高原山区的适用性研究[J].高原气象, 41(4): 1041-1050.DOI: 10.7522/j.issn.1000-0534.2022.00016.Ding L G , |
null | |
null | 范丽军, 韦志刚, 董文杰, 等, 2002.西北干旱区地表辐射特性的初步研究[J].高原气象, 21(3): 309-314. |
null | |
null | 谷星月, 马耀明, 马伟强, 等, 2018.青藏高原地表辐射通量的气候特征分析[J].高原气象, 37(6): 1458-1469.DOI: 10.7522/j.issn.1000-0534.2018.00051.Gu X Y , |
null | |
null | 郝文静, 于海群, 王华玺, 等, 2019.北京奥林匹克森林公园地表反照率动态及其影响因素[J].生态学杂志, 38(2): 427-435. |
null | |
null | 何清, 缪启龙, 李帅, 等, 2009.塔克拉玛干沙漠腹地的长波辐射变化特征[J].高原气象, 28(3): 642-646. |
null | |
null | 贾东于, 文军, 马耀明, 等, 2017.植被对黄河源区水热交换影响的研究[J].高原气象, 36(2): 424-435.DOI: 10.7522/j.issn. 1000-0534.2016.00044.Jia D Y , |
null | |
null | 蒋兴文, 李跃清, 2010.青藏高原地表辐射的气候特征[J].资源科学, 32(10): 1932-1942. |
null | |
null | 蒋友严, 任贾文, 秦翔, 等, 2007.珠穆朗玛峰北坡海拔 6523 m 辐射平衡观测结果分析[J].冰川冻土, 29(4): 589-594. |
null | |
null | 金莉莉, 何清, 买买提艾力?买买提依明, 等, 2014.塔克拉玛干沙漠腹地辐射平衡和反照率变化特征[J].中国沙漠, 34(1): 215-224. |
null | |
null | 赖欣, 范广洲, 华维, 等, 2021.青藏高原陆气相互作用对东亚区域气候影响的研究进展[J].高原气象, 40(6): 1263-1277.DOI: 10.7522/j.issn.1000-0534.2021.zk018.Lai X , |
null | |
null | 李德帅, 王金艳, 王式功, 等, 2014.陇中黄土高原半干旱草地地表反照率的变化特征[J].高原气象, 33(1): 89-96.DOI: 10.7522/j.issn.1000-0534.2012.00178.Li D S , |
null | |
null | 李宏毅, 肖子牛, 朱玉祥, 2018.藏东南地区草地下垫面湍流通量和辐射平衡各分量的变化特征[J].高原气象, 37(4): 923-935.DOI: 10.7522/j.issn.1000-0534.2017.00097.Li H Y , |
null | |
null | 李振朝, 韦志刚, 文军, 等, 2009.黄土高原典型塬区冬小麦田地表辐射平衡各分量特征分析[J].太阳能学报, 30(1): 12-18. |
null | |
null | 刘淳, 任立清, 李学军, 等, 2021.1990-2019年中国北方沙区太阳能资源评估[J].高原气象, 40(5): 1213-1223.DOI: 10.7522/ j.issn.1000-0534.2021.00058.Liu C , |
null | |
null | 刘晶淼, 马金玉, 李世奎, 等, 2009.华北平原北部太阳辐射及地表辐射平衡特征-基于河北固城站的试验观测研究[J].太阳能学报, 30(5): 577-585. |
null | |
null | 刘梦琪, 2018.青藏高原地区夏季大气向下长波辐射观测分析[D].北京: 中国气象科学研究院.Liu M Q, 2018.Observational analysis of summer atmospheric downward longwave radiation in Tibetan Plateau[D].Beijing: Chinese Academy of Meteorological Sciences. |
null | 刘娜, 熊安元, 张强, 等, 2023.青藏高原多源气象辐射数据整合与评估[J].高原气象, 42(1): 35-48.DOI: 10.7522/j.issn.1000-0534.2022.00012.Liu N , |
null | |
null | 刘兴土, 1988.三江平原沼泽辐射平衡与小气候基本特征[J].地理科学, 8(2): 127-135. |
null | |
null | 陆渝蓉, 高国栋, 1983.青藏高原的辐射平衡[J].气象科学, 3(2): 59-65. |
null | |
null | 马宁, 王乃昂, 黄银洲, 等, 2015.巴丹吉林沙漠腹地夏季不同天气条件下陆-湖面辐射收支与能量分配特征对比[J].自然资源学报, 30(5): 796-809. |
null | |
null | 马耀明, 姚檀栋, 王介民, 等, 2006.青藏高原复杂地表能量通量研究[J].地球科学进展, 21(12): 1215-1223. |
null | |
null | 齐月, 房世波, 周文佐, 2014. 近 50年来中国地面太阳辐射变化及其空间分布[J].生态学报, 34(24): 7444-7453. |
null | |
null | 钱泽雨, 胡泽勇, 杜萍, 等, 2003.藏北高原典型草甸下垫面与HEIFE沙漠区辐射平衡气候学特征对比分析[J].太阳能学报, 24(4): 453-460. |
null | |
null | 王欢, 韦志刚, 朱献, 等, 2020.岭南地区典型次生常绿阔叶林下垫面太阳和长波辐射特征分析[J].高原气象, 39(5): 1033-1044.DOI: 10.7522/j.issn.1000-0534.2019.00090.Wang H , |
null | |
null | 王慧, 胡泽勇, 李栋梁, 等, 2009.黑河地区鼎新戈壁与绿洲和沙漠下垫面地表辐射平衡气候学特征的对比分析[J].冰川冻土, 31 (3): 464-473. |
null | |
null | 王力, 张强, 2018. 近 20年青藏高原典型高寒草甸化草原植物物候变化特征[J].高原气象, 37(6): 1528-1534.DOI: 10.7522/j.issn.1000-0534.2018.00090.Wang L , |
null | |
null | 余晓雨, 贾绍凤, 朱文彬, 2022.青海省地表净辐射通量的遥感估算方法及时空特征分析[J].高原气象, 41(4): 921-933.DOI: 10.7522/j.issn.1000-0534.2021.00033.Yu X Y , |
null | |
null | 张乐乐, 高黎明, 赵林, 等, 2019.基于 ITPCAS数据的青藏高原太阳总辐射时空变化特征[J].太阳能学报, 40(9): 2521-2529. |
null | |
null | 周万福, 周秉荣, 李晓东, 等, 2013.青藏高原东部地区辐射平衡及各分量变化特征[J].高原气象, 32(2): 327-333.DOI: 10. 7522/j.issn.1000-0534.2012.00032.Zhou W F , |
null |
/
〈 |
|
〉 |