川南森林湍流通量质量评价及贡献区分析
收稿日期: 2023-01-16
修回日期: 2023-03-27
网络出版日期: 2024-01-11
基金资助
国家自然科学基金项目(42275131)
Turbulent Flux Mass Evaluation and Contribution Region Analysis of the Underlying Surface in Southern Sichuan Forest
Received date: 2023-01-16
Revised date: 2023-03-27
Online published: 2024-01-11
由于通量观测容易受复杂下垫面和仪器精度影响, 需基于涡动相关系统观测原理对原始数据进行严格的预处理和质量控制。本研究选用2021年5 -12月来自于川南地区四峨山森林下垫面的涡动相关系统的湍流观测资料, 观测设备架设在不同高度包括粗糙副层内、 粗糙副层与常通量层边界以及常通量层内。利用上述观测数据量化了两种坐标旋转方案下湍流通量计算结果的差异性, 并结合湍流稳定性和发展性检验对通量资料序列进行了质量评价, 最后分析了不同大气稳定度和不同观测高度下足迹函数所表示的通量贡献区域变化范围。结果表明: 二次坐标旋转校正后的通量数据大于平面拟合后的数据, 且两者的校正差距随观测高度的增加而增大。从通量数据质量等级分布特征来看, 感热通量数据质量优于潜热通量及CO2通量, 且低层数据质量优于高层。38 m和56 m观测高度主风向在东北-西北方向上呈现昼夜相反的变化, 其中5 -9月尤为明显。不同大气稳定度下的通量贡献范围存在一定的差异, 在大气稳定条件下, 38 m观测高度的通量信息80%来源于距离观测塔西侧50~1400 m区域; 在大气不稳定条件下, 通量测量的源区水平范围在0~500 m之间。在56 m观测高度且大气稳定条件下, 通量贡献80%的源区边界距测点可达1500 m; 不稳定条件下, 源区范围在0~750 m之间。冬夏两季在稳定大气条件下贡献区范围有明显差异, 在38 m观测高度上, 夏、 冬季节最大湍流通量信息分别来于1320 m、 700 m。在相同大气稳定度下, 通量贡献区的分布受观测高度的影响, 56 m观测高度通量源区大于38 m的通量源区。
范德民 , 张宇 , 苏有琦 , 张茜 . 川南森林湍流通量质量评价及贡献区分析[J]. 高原气象, 2024 , 43(1) : 227 -240 . DOI: 10.7522/j.issn.1000-0534.2023.00027
As flux observations are susceptible to complex underlying surface and instrument accuracy, rigorous pre-processing and quality control of the raw data is required based on the principles of the Eddy Covariance system observations.In this study, turbulence observations of the eddy-related system from May to December 2021 were selected from the Si'e Mountain Forest in the southern Sichuan region, and the observations were set up at different heights, including within the rough sublayer, at the boundary between the rough sublayer and the normal flux layer, and within the normal flux layer.The variability of the turbulent flux calculations under the two coordinate rotation schemes is quantified by the above observations and the quality of the flux data series is evaluated in conjunction with turbulence stability and development tests.Finally, the range of variability of the flux contribution region represented by the footprint function is analyzed for different atmospheric stability and different observation heights.The results show that the flux data corrected by the double coordinate rotation are larger than those from the plane fit and that the difference in correction between the two is significant with increasing observation height.Regarding flux data quality features, sensible heat flux data quality is better than latent heat flux and CO2 flux, and lower data quality is better than higher data quality.At observation heights of 38 m and 56 m, the dominant wind direction showed opposite day and night variations in northeast-northwest direction, especially from May to September.There is some variation in the range of flux contributions at different levels of atmospheric stability.Under atmospheric stability, 80% of the flux information at 38 m altitude comes from the area 50~1400 m west of the tower; under atmospheric instability, the horizontal range of the source area for flux measurements is between 0 and 500 m.At an observation height of 56 m and under stable atmospheric conditions, the boundary of the source area with 80% flux contribution can be up to 1500 m from the measurement point; under unstable conditions, the source area lies between 0 and 750 m.There is a significant difference in the size of the contribution zone between winter and summer under stable atmospheric conditions, with the maximum turbulent flux information coming from 1320 m and 700 m in summer and winter respectively at an observation height of 38 m.The distribution of the flux contribution zone is influenced by the observation height for the same atmospheric stability, with the flux source zone at 56 m observation height being larger than the flux source zone at 38 m.
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | 常娜, 李茂善, 王灵芝, 等, 2022.峨眉山地区近地层微气象特征研究[J].高原气象, 41(1): 226-240.DOI: 10.7522/j.issn.1000-0534.2021.00111.Chang N , |
null | |
null | 陈辰, 韦志刚, 董文杰, 等, 2018.珠海凤凰山陆气相互作用观测塔通量数据的质量控制与评价[J].热带气象学报, 34(4): 561-569.DOI: 10.16032/j.issn.1004-4965.2018.04.014.Chen C , |
null | |
null | 陈梓涵, 黄颖, 唐剑武, 等, 2021.长江口九段沙盐沼湿地生态系统通量贡献区分析[J].华东师范大学学报(自然科学版)(2): 42-53.DOI: 10.3969/j.issn.1000-5641.2021.02.005.Chen Z H , |
null | |
null | 孔令彬, 仝纪龙, 王聚杰, 等, 2014.城市不同下垫面湍流通量的观测和分析[J].兰州大学学报(自然科学版), 50(2): 228-232.DOI: 10.3969/j.issn.0455-2059.2014.02.013.Kong L B , |
null | |
null | 李萍阳, 蒋维楣, 苗世光, 2002.森林及林木湿地上空近地层大气湍流特性的观测分析[J].南京大学学报(自然科学版), 38(4): 583-592. |
null | |
null | 李英, 李跃清, 赵兴炳, 2008.青藏高原东部与成都平原大气边界层对比分析Ⅰ——近地层微气象学特征[J].高原山地气象研究, 28(1): 30-35. |
null | |
null | 刘和平, 刘树华, 朱廷曜, 等, 1997.森林冠层湍流结构的特征研究[J].北京大学学报(自然科学版), 33(2): 111-118.DOI: 10. 13209/j.0479-8023.1997.035.Liu H P , |
null | |
null | 刘树华, 胡非, 刘辉志, 等, 2003.森林冠层上湍流尺度、耗散率和湍流结构参数[J].北京大学学报(自然科学版), 39(1): 73-82.DOI: 10.3321/j.issn.0479-8023.2003.01.012.Liu S H , |
null | |
null | 刘树华, 茅宇豪, 胡非, 等, 2009.不同下垫面湍流通量计算方法的比较研究[J].地球物理学报, 52(3): 616-629. |
null | |
null | 马耀明, 马伟强, 胡泽勇, 等, 2002.青藏高原草甸下垫面湍流强度相似性关系分析[J].高原气象, 21(5): 514-517. |
null | |
null | 米娜, 于贵瑞, 温学发, 等, 2006.中国通量观测网络(ChinaFLUX)通量观测空间代表性初步研究[J].中国科学(地球科学), 36(): 22-33. |
null | |
null | 宫丽娟, 刘绍民, 双喜, 等, 2009.涡动相关仪和大孔径闪烁仪观测通量的空间代表性[J].高原气象, 28(2): 246-257. |
null | |
null | 李茂善, 阴蜀城, 刘啸然, 等, 2019.近10 年青藏高原及其周边湍流通量变化的数值模拟[J].高原气象, 38(6): 1140-1148.DOI: 10.7522/j.issn.1000-0534.2018.00145.Li M S , |
null | |
null | 李跃清, 2021.西南涡涡源研究的有关新进展[J].高原气象, 40(6): 1394-1406.DOI: 10.7522/j.issn.1000-0534.2021.zk005. LI Y Q , 2021.New related progress on researches of the vortex source of Southwest China Vortex[J].Plateau Meteorology, 40(6): 1394-1406.DOI: 10.7522/j.issn.1000-0534.2021.zk005 . |
null | 梁捷宁, 张镭, 鲍婧, 等, 2013.黄土高原复杂地形受中尺度运动影响的稳定边界层湍流特征[J].大气科学, 37(1): 113-123.DOI: 10.3878/j.issn.1006-9895.2012.12004.Liang J N , |
null | |
null | 孙鹏飞, 范广洲, 王寅钧, 等, 2022.小兴安岭森林下垫面湍流特征研究[J].气象, 48(8): 1020-1031.DOI: 10.7519/j.issn.1000-0526.2022.032102.Sun P F , |
null | |
null | 孙赛钰, 王维真, 徐菲楠, 2021.黑河流域中上游水热通量足迹模型的对比分析[J].遥感技术与应用, 36(4): 887-897.DOI: 10.11873/j.issn.1004-0323.2021.4.0887.Sun S Y , |
null | |
null | 王介民, 王维真, 奥银焕, 等, 2007.复杂条件下湍流通量的观测与分析[J].地球科学进展, 22(8): 791-797.DOI: 10.3321/j.issn.1001-8166.2007.08.004.Wang J M , |
null | |
null | 王蓉, 张强, 岳平, 等, 2020.大气边界层数值模拟研究与未来展望[J].地球科学进展, 35(4): 331-349.DOI: 10.11867/j.issn. 1001-8166.2020.036.Wang R , |
null | |
null | 王少影, 张宇, 吕世华, 等, 2009.金塔绿洲湍流资料的质量控制研究[J].高原气象, 28(6): 1260-1273. |
null | |
null | 王维真, 徐自为, 刘绍民, 等, 2009.黑河流域不同下垫面水热通量特征分析[J].地球科学进展, 24(7): 714-723. |
null | |
null | 吴笛, 胡泽勇, 付春伟, 等, 2022.基于CLM4.5的高寒草地辐射收支和水热交换的数值模拟研究[J].高原气象, 41(1): 107-121.DOI: 10.7522/j.issn.1000-0534.2021.00045.Wu D , |
null | |
null | 徐自为, 刘绍民, 宫丽娟, 等, 2008.涡动相关仪观测数据的处理与质量评价研究[J].地球科学进展, 23(4): 357-370.DOI: 10.11867/j.issn.1001-8166.2008.04.0357.Xu Z W , |
null | |
null | 杨斌, 袁祺, 谭昌海, 等, 2022.青藏高原东部拉萨河下游地区大气湍流交换特征研究[J].高原气象, 41(1): 204-215.DOI: 10.7522/j.issn.1000-0534.2021.00086.Yang B , |
null | |
null | 张艳武, 黄静, 吴统文, 2009.黑河下游额济纳绿洲近地层湍流输送特征研究[J].气象学报, 67(3): 433-441.DOI: 10.11676/qxxb2009.043.Zhang Y W , |
null | |
null | 赵佳玉, 肖薇, 张弥, 等, 2020.通量梯度法在温室气体及同位素通量观测研究中的应用与展望[J].植物生态学报, 44(4): 305-317.DOI: 10.17521/cjpe.2019.0227.Zhao J Y , |
null | |
null | 赵兴炳, 刘长炜, 童兵, 等, 2021.青藏高原西部狮泉河陆面过程参数和土壤热属性参数研究[J].高原气象, 40(4): 711-723.DOI: 10.7522/j.issn.1000-0534.2021.00017.Zhao X B , |
null | |
null | 周德刚, 黄荣辉, 2010.在观测质量控制下戈壁下垫面的湍流输送特征[J].中国科学(地球科学), 40(8): 1068-1078. |
null |
/
〈 |
|
〉 |