论文

青藏高原中东部和四川盆地的夏季雨滴谱对比分析研究

  • 刘艳霞 ,
  • 文军 ,
  • 谢晓林
展开
  • 1. 中国科学院西北生态环境资源研究院,甘肃 兰州 730000
    2. 中国科学院大学,北京 100039
    3. 成都信息工程大学大气科学学院/高原大气与环境四川省重点实验室,四川 成都 610225
    4. 四川省气象探测数据中心,四川 成都 610072

刘艳霞(1986 -), 女, 河南济源人, 博士研究生, 从事陆面过程和云-降水物理研究.E-mail:

收稿日期: 2022-10-19

  修回日期: 2023-04-03

  网络出版日期: 2024-01-11

基金资助

国家自然科学基金项目(41905084); 民航飞行技术与飞行安全重点实验室开放项目资助(FZ2020KF04); 成都信息工程大学人才引进项目(KYTZ201821)

A Comparative Study on the Summer Raindrop Size Distribution Among Areas over the Central and Eastern Qinghai-XizangTibetanPlateau and the Western Sichuan Basin

  • Yanxia LIU ,
  • Jun WEN ,
  • Xiaolin XIE
Expand
  • 1. Northwest Institute of Ecological Environment and Resources,Chinese Academy of Sciences,Lanzhou 730000,Gansu,China
    2. University of Chinese Academy of Sciences,Beijing 100039,China
    3. College of Atmospheric Sciences,Chengdu University of Information Technology / Sichuan Key Laboratory of Plateau Atmosphere and Environment,Chengdu 610225,Sichuan,China
    4. Meteorological observation data center of Sichuan province,Chengdu 610072,Sichuan,China

Received date: 2022-10-19

  Revised date: 2023-04-03

  Online published: 2024-01-11

摘要

为了进一步认识青藏高原中东部和下游四川盆地的降水微观特征和差异, 本文利用2019年7 -8月和2020年7 -8月那曲、 玉树、 林芝、 巴塘、 泸定和成都6个地区的雨滴谱观测资料, 研究了不同地区之间的雨滴谱特征和差异, 并提出了各个地区降水的Gamma谱形状参数-斜率参数关系和反射率因子-雨强关系。结果表明: 因更多强对流降水的贡献, 盆地和邻近地区(成都和泸定)的雨滴谱整体比高原地区(那曲、 玉树、 林芝和巴塘)的更宽, 中大雨滴(直径≥1.0 mm)数浓度更高; 而高原地区的降水主要来自层云和弱对流, 整体雨滴谱更窄, 小雨滴(直径<1.0 mm)数浓度更高。6个地区的雨滴谱均随雨强增大而变宽, 数浓度也逐渐升高。不同地区之间的雨滴谱差异也会随雨强变化而改变, 当雨强超过0.1 mm·h-1后, 那曲和林芝的小雨滴数浓度随雨强增大而增大的幅度明显比其他地区更大; 当雨强达到5 mm·h-1后, 成都和泸定的中大雨滴数浓度与其他高原地区的差异也逐渐变大。在谱形状参数相同情况下, 成都和泸定的谱倾斜率更小, 反映了这两个地区雨滴数浓度随粒径增大而减小的速率比高原地区的更慢。在相同雷达回波强度(反射率因子)情况下, 那曲和林芝层云降水的雨强比其他地区大; 林芝对流降水在雷达回波低于40 dBZ时, 雨强也比其他地区的大, 而那曲对流降水在雷达回波大于40 dBZ后, 雨强比其他地区的小。

本文引用格式

刘艳霞 , 文军 , 谢晓林 . 青藏高原中东部和四川盆地的夏季雨滴谱对比分析研究[J]. 高原气象, 2024 , 43(1) : 28 -41 . DOI: 10.7522/j.issn.1000-0534.2023.00033

Abstract

To promote the understanding of precipitation microphysical characteristics and differences in the central and eastern Qinghai-Xizang (Tibetan) Plateau and the Sichuan Basin, disdrometer measurements collected at Naqu, Yushu, Linzhi, Batang, Luding, and Chengdu from July to August 2019 and 2020 are utilized to comprehensively investigate the characteristics and differences of raindrop size distributions (RSDs) among the six different areas.Meanwhile, local empirical relations between the Gamma shape parameter and slope parameter and between the reflectivity factor and rain rate are proposed and compared.The results show that RSDs in the basin and adjacent areas (Chengdu and Luding) are generally wider and have higher number concentrations of medium-to-large raindrops (diameter ≥1.0 mm) than those in the plateau areas (Naqu, Yushu, Linzhi, and Batang) due to the contribution of more strong convective precipitation.In contrast, RSDs in the plateau areas are narrower and possess higher number concentrations of small raindrops (diameter <1.0 mm) due to more occurrences of stratiform and weak-convective precipitation.RSDs gradually become wider with higher number concentrations as the increase of rainfall intensity both in the six observation areas.The RSD differences among the six observation areas can also change with the rain rate.Specifically, when the rain rate exceeds 0.1 mm·h-1, the increase of the number concentration of small raindrops with increasing rain rate is significantly greater in Naqu and Linzhi than in other areas, and can gradually exceed that in Chengdu.When the rain rate exceeds 5 mm·h-1, the differences in the number concentrations of medium-to-large raindrops between Chengdu and Luding and other plateau areas also gradually become larger.With the same shape parameters, the slope parameters in Chengdu and Luding are smaller than in other areas, indicating that they possess a slower decreasing rate of raindrop number concentration with increasing particle size than that in other plateau areas.Under the same radar echo intensities (reflectivity factor), rain rates of stratiform precipitation in Naqu and Linzhi are greater than in other regions.The rain rate of convective precipitation in Linzhi is also greater than that in other areas when the radar echo is below 40 dBZ, but the rain rate of convective precipitation in Naqu can be smaller than that in other areas when the radar echo is greater than 40 dBZ.

参考文献

null
Atlas D Srivastava R C Sekhon R S1973.Doppler radar characteristics of precipitation at vertical incidence[J].Reviews of Geophysics Space Physics11(1): 1-35.DOI: 10.1029/RG011i001p00001 .
null
Battaglia A Rustemeier E Tokay A, et al, 2010.PARSIVEL snow observations: a critical assessment[J].Journal of Atmospheric and Oceanic Technology27(2): 333-344.DOI: 10.1175/2009JTECHA1332.1 .
null
Bringi V N Chandrasekar V Hubbert J, et al, 2003.Raindrop size distribution in different climatic regimes from disdrometer and dual-polarized radar analysis[J].American Meteorological Society60(2): 354-365.DOI: 10.1175/1520-0469(2003)060<0354: RSDIDC>2.0.CO; 2 .
null
Cao Q Zhang G F2009.Errors in estimating raindrop size distribution parameters employing disdrometer and simulated raindrop spectra[J].Journal of Applied Meteorology and Climatology48(2): 406-425.DOI: 10.1175/2008JAMC2026.1 .
null
Chandrasekar V Meneghini R Zawadzki I2003.Global and local precipitation measurements by Radar[J].Meteorological Monographs30(52): 215-236.DOI: 10.1175/00659401(2003)030<0215: GALPMB>2.0.CO; 2 .
null
Chen B J Hu Z Liu L, et al, 2017.Raindrop size distribution measurements at 4500 m on the Tibetan Plateau during TIPEX-Ⅲ[J].Journal of Geophysical Research: Atmospheres122(20): 11092-11106.DOI: 10.1002/2017JD027233 .
null
Chen B J Yang J Pu J P2013.Statistical characteristics of raindrop size distribution in the Meiyu season observed in eastern China[J].Journal of the Meteorological Society of Japan91(2): 215-227.DOI: 10.2151/jmsj.2013-208.DOI: 10.2151/jmsj.2013-208 .
null
Friedrich K Higgins S Masters F J, et al, 2013.Articulating and stationary PARSIVEL disdrometer measurements in conditions with strong winds and heavy rainfall[J].Journal of Atmospheric and Oceanic Technology30(9): 2063-2080.DOI: 10.1175/JTECH-D-12-00254.1 .
null
Fulton, R A, Breidenbach J P Seo D J, et al, 1998.The WSR-88D rainfall algorithm[J].Weather Forecast, 13: 377-395.DOI: 10. 1175/1520-0434(1998)0132.0.CO; 2 .
null
He J S Zheng J F Zeng Z M, et al, 2021.A comparative study on the vertical structures and microphysical properties of stratiform precipitation over south China and the Tibetan Plateau[J].Remote Sensing13(15): 2897.DOI: 10.3390/rs13152897 .
null
Maki M Kenan T D Sasaki Y, et al, 2001.Characteristics of the raindrop size distribution in tropical continental squall lines observed in Darwin, Australia[J].Journal of Applied Meteorology40(8): 1393-1412.DOI: 10.1175/1520-0450(2001)0402.0.CO; 2 .
null
Milbrandt J A Yau M K2005.A multi-moment bulk microphysics parameterization.Part I: Analysis of the role of the spectral shape parameter[J].Journal of the Atmospheric Sciences62(9): 3051-3064.DOI: 10.1175/JAS3534.1 .
null
Rosenfeld D Ulbrich C W2003.Cloud microphysical properties, processes, and rainfall estimation opportunities[J].Meteorological Monographs30(52): 237-258.DOI: 10.1175/0065-9401(2003)0302.0.CO; 2 .
null
Seifert A2005.On the shape-slope relation of drop size distribution in convective rain[J].Journal of Applied Meteorology44(7): 1146-1151.DOI: 10.1175/JAM2254.1 .
null
Tokay A Short D A1996.Evidence from tropical raindrop spectra of the origin of rain from stratiform versus convective clouds[J].Journal of Applied Meteorology35(3): 355-371.DOI: 10. 1175/1520-0450(1996)0352.0.CO; 2 .
null
Tokay A Wolff D B Petersen W A2014.Evaluation of the new version of the laser-optical disdrometer OTT Parsivel2 [J].Journal of Atmospheric and Oceanic Technology, 31: 1276-1288.DOI: 10.1175/ JTECH-D-13-00174.1 .
null
Ulbrich C W1983.Natural variations in the analytical form of the raindrop size distribution[J].Journal of Applied Meteorology, 22: 1764-1775.DOI: 10.1175/1520-0450(1983)0222.0.co; 2 .
null
Vivekanandan J Zhang G F Brandes E2004.Polarimetric radar estimators based on a constrained gamma drop size distribution model[J].Journal of Applied Meteorology43(2): 217-230.DOI: 10.1175/1520-0450(2004)043<0217: preboa>2.0.co; 2 .
null
Wang Y J Zheng J F Cheng Z G, et al, 2020.Characteristics of raindrop size distribution on the eastern slope of the Tibetan Plateau in summer[J].Atmosphere11(6).DOI: 10.3390/atmos11060562 .
null
Wen L Zhao K Wang M Y, et al, 2019.Seasonal variations of observed raindrop size distribution in East China[J].Advances in Atmospheric Sciences36(4): 346-362.DOI: 10.1007/s00376-018-8107-5 .
null
Wen L Zhao K Zhang G F, et al, 2016.Statistical characteristics of raindrop size distributions observed in East China during the Asian summer monsoon season using 2-D video disdrometer and Micro Rain Radar data[J].Journal of Geophysical Research: Atmospheres121(5): 2265-2282.DOI: 10.1002/2015JD024160 .
null
Wu Y H Liu L P2017.Statistical characteristics of raindrop size distribution in the Tibetan Plateau and southern China[J].Advances in Atmospheric Sciences34(6): 727-736.DOI: 10.1007/s00376-016-5235-7 .
null
Wu Z H Zhang Y Zhang L F, et al, 2019.Characteristics of summer season raindrop size distribution in three typical regions of western Pacific[J].Journal of Geophysical Research: Atmospheres124(2): 4054-4073.DOI: 10.1029/2018JD029194 .
null
Zhang A Hu J J Chen S, et al, 2019.Statistical characteristics of raindrop size distribution in the monsoon season observed in southern China[J].Remote Sensing11(4): 432.DOI: 10.3390/rs11040432 .
null
Zhang G F Vivekananda J Brandes E A, et al, 2003.The shape-slope relation in observed Gamma distribution size distribution: Statistical error or useful information?[J].Journal of Atmospheric and Oceanic Technology20(8): 1106-1119.DOI: 10.1175/1520-0426(2003)020<1106: TSRIOG>2.0.CO; 2
null
常祎, 郭学良, 2016.青藏高原那曲地区夏季对流云结构及雨滴谱分布日变化特征[J].科学通报61(15): 1706-1720.DOI: 10.1360/N972015-01292.Chang W
null
Guo X L2016.Characteristics of convective cloud and precipitation during summer time at Naqu over Tibetan Plateau[J].Chinese Science Bulletin61(15): 1706-1720.DOI: 10.1360/N972015-01292 .
null
陈刚, 赵坤, 吕迎辉, 等, 2022.河南“21·7”特大暴雨过程微物理特征变化分析[J].中国科学: 地球科学, 52.DOI: 10.1360/ N072022-0029.Chen G
null
Zhao K Y H,et al,2022.Analysis of microphysical characteristics during "21·7" heavy rainstorm in Henan Province[J].Scientia Sinica (Terrae),52.DOI: 10.1360/ N072022-0029 .
null
陈玲, 周筠珺, 2015.青藏高原和四川盆地夏季降水云物理特性差异[J].高原气象34(3): 621-632.DOI: 10.7522/j.issn.1000-0534.2014.00036.Chen L
null
Zhou Y J2015.Different physical properties of summer precipitation clouds over Qinghai-Xizang Plateau and Sichuan Basin[J].Plateau Meteorology34(3): 621-632.DOI: 10.7522/j.issn.1000-0534.2014.00036 .
null
陈普晨, 李忠勤, 王璞玉, 等, 2023.高寒山区固态降水观测对比研究[J].高原气象42(1): 116-127.DOI: 10.7522/j.issn.1000-0534.2021.0116.Chen P C
null
Li Z Q Wang P Y,et al,2023.Comparative study of solid precipitation observation in alpine mountains[J].Plateau Meteorology42(1): 116-127.DOI: 10.7522/j.issn.1000-0534.2022.00021 .
null
丁一汇, 王绍武, 郑景云, 等, 2015.中国气候[M].北京: 科学出版社.Ding Y H,Wang S W,Zheng J Y,et al,2015.Climate of China[M].Beijing: Science Press.
null
黄泽文, 彭思越, 张浩然, 等, 2022.福建安溪雨滴谱特征[J].应用气象学报33(2): 205-217.DOI: 10.11898/1001-7313. 20220207.Huang Z W
null
Peng S Y Zhang H R,et al,2022.Characteristics of raindrop size distribution at Anxi of Fujian[J].Journal of Applied Meteorological Science33(2): 205-217.DOI: 10.11898/1001-7313.20220207 .
null
金祺, 袁野, 刘慧娟, 等, 2015.江淮之间夏季雨滴谱特征分析[J].气象学报73(4): 778-788.DOI: 10.11676/qxxb2015.036.Jin Q
null
Yuan Y Liu H J, et al, 2015.Analysis of microphysical characteristics of the raindrop spectrum over the area between the Yangtze River and the Huaihe River during summer[J].Acta Meteorologica Sinica73(4): 778-788.DOI: 10.11676/qxxb2015.036 .
null
李典,白 爱娟, 薛羽君, 等, 2014.青藏高原和四川盆地夏季对流性降水特征的对比分析[J].气象40(3): 280-289.DOI: 10. 7519/j.issn.1000-0526.2014.03.003.Li D
null
Bai A J Xue Y J, et al, 2014.Comparative analysis on characteristics of summer convective precipitation over Tibetan Plateau and Sichuan Basin[J].Meteorological Monthly40(3): 280-289.DOI: 10.7519/j.issn. 1000-0526.2014.03.003 .
null
李慧, 银燕, 单云鹏, 等, 2018.黄山层状云和对流云降水不同高度的雨滴谱统计特征分析[J].大气科学42(2): 268-280.DOI: 10. 3878/j.issn.1006-9895.1705.16291.Li H
null
Yin Y Shan Y P, et al,2018.Statistical characteristics of raindrop size distribution for stratiform and convective precipitation at different altitudes in Mt.Huangshan[J].Chinese Journal of Atmospheric Sciences42(2): 268-280.DOI: 10.3878/j.issn.1006-9895. 1705.16291 .
null
李山山,王 晓芳, 万蓉, 等, 2020.青藏高原东坡不同海拔区域的雨滴谱特征[J].高原气象39(5): 899-911.DOI: 10.7522/j.issn.1000-0534.2019.00086.Li S S
null
Wang X F Wan R, et al, 2020.The characteristics of raindrop spectrum in different altitude region on the eastern slope of Qinghai-Xizang Plateau[J].Plateau Meteorology39(5): 899-911.DOI: 10.7522/j.issn. 1000-0534.2019.00086 .
null
李嗣源, 2022.藏东南局地山谷风环流在地形云和降水形成中的作用[D].北京: 中国气象科学研究院.Li S Y, 2022.The role of local valley wind circulation in the formation of topographic cloud and precipitation in southeast Tibet[D].Beijing: Chinese Academy of Meteorological Sciences.
null
刘彦, 苏德斌, 杨宁, 等, 2023.基于二维雨滴谱仪的巴彦淖尔地区降雹谱个例分析[J].高原气象42(3): 748-757.DOI: 10.7522/j.issn.1000-0534.2022.00059.Liu Y
null
Su D B Yang N, et al,2023.Case study of hail size distribution in Bayannur area based on two-dimensional video disdrometer[J].Plateau Meteorology42(3): 748-757.DOI: 10.7522/j.issn.1000-0534.2022.00059 .
null
彭旺, 李琼, 魏加华, 等, 2022.柴达木盆地东北缘山区和平原区雨滴谱特征对比研究[J].高原气象41(6): 1471-1480.DOI: 10.7522/j.issn.1000-0534.2021.00122.Peng W
null
Li Q Wei J H, et al, 2022.The mountainous and plain areas on the northeastern margin of the Qaidam Basin contrast study on raindrop spectrum characteristics[J].Plateau Meteorology41(6): 1471-1480.DOI: 10.7522/j.issn.1000-0534.2021.00122 .
null
沈程锋, 李国平, 2022.基于GPM资料的四川盆地及周边地区夏季地形降水垂直结构研究[J].高原气象41(6): 1532-1543.DOI: 10.7522/j.issn.1000-0534.2021.0116.Shen C F
null
Li G P2022.The vertical structure of orographic precipitation during warm season in the Sichuan Basin and its surrounding areas by using GPM dual-frequency spaceborne precipitation radar[J].Plateau Meteorology41(6): 1532-1543.DOI: 10.7522/j.issn. 1000-0534.2021.0116 .
null
王飞, 李集明, 姚展予, 等, 2022.我国人工增雨作业效果定量评估研究综述[J].气象48(8): 945-962.DOI: 10.7519/j.issn. 1000-0526.2022.012701.Wang F
null
Li J M Yao Z Y, et al,2022.Advances of quantitative evaluation studies of artificial precipitation enhancement in China[J].Meteorological Monthly48(8): 945-962.DOI: 10.7519/j.issn.1000-0526.2022.012701 .
null
王改利, 周任然, 扎西索郎, 等, 2021.青藏高原墨脱地区云降水综合观测及初步统计特征分析[J].气象学报79(5): 841-852.DOI: 10.11676/qxxb2021.054.Wang G L
null
Zhou R R Zha Xi S L, et al, 2021.Comprehensive observations and preliminary statistical analysis of clouds and precipitation characteristics in Motuo of Tibet Plateau[J].Acta Meteorologica Sinica79(5): 841-852.DOI: 10.11676/qxxb2021.054 .
null
王俊, 王文青, 王洪, 等, 2021.短时强降水和冰雹云降水个例雨滴谱特征分析[J].高原气象40(5): 1071-1086.DOI: 10.7522/ j.issn.1000-0534.2020.00091.Wang J
null
Wang W Q Wang H,et al, 2021.Characteristics of the raindrop size distribution during a short-time heavy rainfall and a squall line accompanied by hail[J].Plateau Meteorology40(5): 1071-1086.DOI: 10.7522/j.issn.1000-0534.2020.00091 .
null
吴亚昊, 刘黎平, 周筠珺, 等, 2016.雨滴谱的变化对降水估测的影响研究[J].高原气象35(1): 220-230.DOI: 10.7522/j.issn. 1000-0534.2014.00093.Wu Y H
null
Liu L P Zhou Y J, et al, 2016.Study of raindrop influence of spectrum change on precipitation estimation[J].Plateau Meteorology35(1): 220-230.DOI: 10.7522/j.issn.1000-0534.2014.00093 .
null
赵城城, 张乐坚, 梁海河, 等, 2021.北京山区和平原地区夏季雨滴谱特征分析[J].气象47(7): 830-842.DOI: 10.7519/j.issn. 1000-0526.2021.07.006.Zhao C C
null
Zhang L J Liang H H, et al, 2021.Microphypical characteristics of the raindrop size distribution between mountain and plain areas over Beijing in summer[J].Meteorological Monthly47(7): 830-842.DOI: 10.7519/j.issn.1000-0526.2021.07.006 .
null
左园园, 郑佳锋, 贺婧姝, 等, 2022.一次高原涡过境的不同云-降水垂直结构和特征研究[J].高原气象41(5): 1251-1265.DOI: 10.7522/j.issn.1000-0534.2021.00059.Zuo Y Y
null
Zheng J F He J S, et al, 2022.Study on the vertical structures and characteristics of different cloud-precipitation types during a Qinghai-Xizang Plateau vortex transit[J].Plateau Meteorology41(5): 1251-1265.DOI: 10.7522/j.issn.1000-0534.2021.00059 .
文章导航

/