青藏高原东坡地形对影响云南降水的高原涡的作用机理
收稿日期: 2022-12-02
修回日期: 2023-04-19
网络出版日期: 2024-01-11
基金资助
国家自然科学基金项目(42075013); 云南省气象局自筹科研项目(CS202203)
Action Mechanism of Tibetan Plateau’s Eastern Slope Topography on the PLV Affecting Yunnan Precipitation
Received date: 2022-12-02
Revised date: 2023-04-19
Online published: 2024-01-11
利用常规观测资料、 FNL分析资料及经质控后的自动站小时降水数据, 诊断分析了青藏高原东坡地形在2017年7月2 -3日高原涡影响云南降水过程中的作用, 并利用数值模式WRFv4.0对此次过程进行了地形敏感性试验。结果表明: 高原涡是此次云南强降水的重要影响系统; 低涡中心及附近区域中高层维持暖心结构, 并呈现显著的上升、 下沉运动交替的分布; 过程累积雨量分布表现为两条明显的与山脉走向平行的西北-东南向雨带, 且具有强弱交错的分布特征, 强降水集中出现在午后至傍晚及前半夜两个时段内, 中心均位于地形边坡, 并随着低涡向下游传播; 南亚高压、 西北辐散气流、 西太平洋副热带高压及滇缅高压为低涡的东移发展提供了有利的高空环流场, 500 hPa正涡度及700 hPa水汽通量辐合中心对强降水落区具有较好指示意义; 低涡降水期间存在β中尺度重力波, 波动由青藏高原东坡地形激发, 沿着300~200 hPa的气层传播, 高空的非地转平衡运动及垂直风切变为重力波的发展及传播提供了有利条件, 重力波先于低涡及降水向下游方向移动及发展, 波脊处对应上升运动及辐散中心, 波槽处对应下沉运动及辐合中心, 强降水及波脊均位于低涡西南侧强辐合上升运动区; 地形高度降低后, 其机械阻挡抬升作用减弱, 重力波和高原低涡消失, 雨带强度及空间分布特征发生显著改变。高原东坡地形对高原涡的形成和发展, 以及高原涡影响下的云南降水具有重要作用。
何钰 , 朱莉 , 李国平 , 谢家旭 , 马文倩 , 陶丽 , 张万诚 . 青藏高原东坡地形对影响云南降水的高原涡的作用机理[J]. 高原气象, 2024 , 43(1) : 42 -58 . DOI: 10.7522/j.issn.1000-0534.2023.00037
Using radiosonde and ground mapping data from conventional observations, FNL analysis data (1°×1°) and quality controlled hourly precipitation data of Yunnan regional automatic station, diagnosed the function of the Qinghai-Xizang Plateau’s eastern slope topography in the PLV (plateau vortex) affected precipitation in Yunnan during 2-3 July 2017.While the latest WRFv4.0 numerical model is used to conduct the topographic sensitivity test of this process.The results show that PLV which generated in the Yajiang region of Sichuan province (NO.C1735) is an important system influenced on this heavy rainfall in Yunnan; This low-vortex system maintain warm core structure in the middle and high altitude during the process period, corresponding with remarkable alternately distribution of ascending and descending movements; Distribution of process accumulated rainfall present two obvious NW-SE rain belts parallel to the mountain trend and the precipitation on the rain belt have intensity interlaced fluctuation characteristics; The heavy rainfall mainly occurred within two periods: one from afternoon to evening and other at the first half of the night, and all located besides the terrain slope (the east and south slopes), especially in areas with steep terrain, large slopes, and trumpet-shaped topography, and then propagates downstream alone with the PLV; The South Asian High, northwest divergent airflow, Western Pacific subtropical high and Yunnan-Myanmar high provides favorable upper flow field for the eastward movement and development of the PLV, besides the position of 500 hPa positive vorticity and 700 hPa water vapor flux convergence can well indicates the heavy rainfall area; There exist β-mesoscale gravity wave during the period of precipitation, which stimulated by the Qinghai-Xizang Plateau’s eastern slope, and propagate between 300~200 hPa; Non geostrophic equilibrium motion and vertical wind shear at high-altitude are beneficial to the occurrence and propagation of gravity wave; The gravity wave propagate downstream before the PLV and precipitation, its wave ridge corresponds to the upward motion and divergence center, whereas the wave trough corresponds to the descending motion and convergence center, the heavy precipitation and the wave ridge are all located at the southwest side of PLV, the area of strong convergence and upward movement; After reduced the terrain height, its mechanical blocking and lifting effect weakened, the gravity wave and PLV disappears, leading to significant changes in the intensity and spatial distribution of the rain belt; Thus, the topography of the eastern slope of the Plateau plays important role both on the formation and development of PLV and precipitation in Yunnan under the influence of PLV.
null | |
null | |
null | |
null | |
null | |
null | |
null | 巢纪平, 1980.非均匀层结大气中的重力惯性波及其在暴雨预报中的初步应用[J].大气科学, 4(3): 230-235.DOI: 10.3878/j.issn.1006-9895.1980.03.04.Chao J P , 1980.The gravitational wave in non-uniform stratification atmosphere and its preliminary application for the prediction of heavy rainfall[J].Chinese Journal of Atmospheric Sciences, 4(3): 230-235.DOI: 10.3878/j.issn.1006-9895.1980.03.04 . |
null | 陈伯民, 钱正安, 张立盛, 1996.夏季青藏高原低涡形成和发展的数值模拟[J].大气科学, 20(4): 491-502.DOI: 10.3878/j.issn.1006-9895.1996.04.14.Chen B M , |
null | |
null | 陈功, 李国平, 2010.基于WRF的高原低涡内波动特征及空心结构的初步研究[J].高原山地气象研究, 30(1): 6-11.DOI: 10.3969/j.issn.1674-2184 ·2010.01.002. |
null | |
null | |
null | |
null | 陈功, 李国平, 李跃清, 2012. 近 20年来青藏高原低涡的研究进展[J].气象科技进展, 38(4): 6-12. |
null | |
null | 陈金中, 黄荣辉, 1995.中层大气重力波的一种激发机制及其数值模拟1、非地转不稳定和波结构[J].大气科学, 19(5): 554-562. |
null | |
null | 陈炜, 李跃清, 2019.青藏高原东部重力波过程与西南涡活动的统计关系[J].大气科学, 43(4): 773-782.DOI: 10.3878/j.issn.1006-9895.1810.18130.Chen W , |
null | |
null | 段旭, 王曼, 陈新梅, 等, 2011.中尺度 WRF 数值模式系统本地化业务试验[J].气象, 37(1): 39-47.DOI: 10.7519/j.issn.1000-0526.2011.01.005.Duan X , |
null | |
null | 付超, 谌云, 单久生, 2017.地形因子对降水的影响研究综述[J].气象与减灾研究, 40(4): 318-324. |
null | |
null | 高守亭, 孙淑清, 1986.应用理查逊数判别中尺度波动的不稳定[J].大气科学, 10(2): 171-182. |
null | |
null | 高学杰, 徐影, 赵宗慈, 等, 2006.数值模式不同分辨率和地形对东亚降水模拟影响的试验[J].大气科学, 30(2): 185-192.DOI: 10.3878/j.issn.1006-9895.2006.02.01.Gao X J , |
null | |
null | 龚佃利, 吴增茂, 傅刚, 2005.一次华北强对流风暴的中尺度特征分析[J].大气科学, 29(3): 453-464.DOI: 10.3878/j.issn. 1006-9895.2005.03.13.Gong D L , |
null | |
null | 何光碧, 2006.高原东侧陡峭地形对一次盆地中尺度涡旋及暴雨的数值试验[J].高原气象, 25(3): 430-441. |
null | |
null | 何光碧, 彭俊, 屠妮妮, 2015.基于高分辨率地形数据的模式地形构造与数值试验[J].高原气象, 34(4): 910-922.DOI: 10. 7522/j.issn.1000-0534.2014.00022.He G B , |
null | |
null | 何光碧, 屠妮妮, 张利红, 等, 2013.青藏高原东侧一次低涡暴雨过程地形影响的数值试验[J].高原气象, 32(6): 1546-1556.DOI: 10.7522/j.issn.1000-0534.2012.00150.He G B , |
null | |
null | 何建军, 余晔, 刘娜, 等, 2014.复杂地形区陆面资料对WRF模式模拟性能的影响[J].大气科学, 38(3): 484-498.DOI: 10. 3878/j.issn.1006-9895.2013.13186.He J J , |
null | |
null | 胡伯威, 2005.梅雨锋上MCS的发展、传播以及与低层“湿度锋”相关联的CISK惯性重力波[J].大气科学, 29(6): 845-853. |
null | |
null | 黄楚惠, 李国平, 牛金龙, 等, 2015.近30 年夏季移出型高原低涡的气候特征及其对我国降雨的影响[J].热带气象学报, 31 (6): 827-838. |
null | |
null | 黄荣辉, 陈金中, 2002.平流层球面大气地转适应过程和惯性重力波的激发[J].大气科学, 26(3): 289-306.DOI: 10.3878/j.issn.1006-9895.2002.03.01.Huang R H , |
null | |
null | 金妍, 李国平, 2021.爬流和绕流对山地突发性暴雨的影响[J].高原气象, 40(2): 314-323.DOI: 10.7522/j.issn.1000-0534.2020.00041.Jin Y , |
null | |
null | 李川, 陈静, 何光碧, 2006.青藏高原东侧陡峭地形对一次强降水天气过程的影响[J].高原气象, 25(3): 442-450. |
null | |
null | 李国平, 2013.高原涡、西南涡研究的新进展及有关科学问题[J].沙漠与绿洲气象, 7(3): 1-6. |
null | |
null | 李国平, 2021.青藏高原动力气象学(第三版)[M].北京: 气象出版社, 82-88.Li G P, 2021.Dynamic Meteorology of the Tibetan Plateau (3rd Edition)[M].Beijing: China Meteorological Press. |
null | 李国平, 张万诚, 2019.高原低涡、切变线暴雨研究新进展[J].暴雨灾害, 38(5): 464-471.DOI: 10.3969/j.issn.1004-9045.2019. 05.008.Li G P , |
null | |
null | 李华宏, 王曼, 曹杰, 等, 2014.雷达资料在云南一次强降水过程中的三维变分同化试验[J].热带气象学报, 30(5): 881-893.DOI: 10.3969/j.issn.1004-4965.2014.05.008.Li H H , |
null | |
null | 李江萍, 王式功, 孙国武, 2012.高原低涡研究的回顾与展望[J].兰州大学学报(自然科学版), 48(4): 53-71.DOI: 10.3969/j.issn.0455-2059.2012.04.009.Li J P , |
null | |
null | 刘富明, 洑梅娟, 1986.东移的青藏高原低涡的研究[J].高原气象, 5(2): 125-134. |
null | |
null | 刘晓冉, 李国平, 2006.青藏高原低涡研究的回顾与展望[J].干旱气象, 24(1): 60-66.DOI: 10.3969/j.issn.1006-7639.2006. 01.013.Liu X R , |
null | |
null | 刘裕禄, 黄勇, 2013.黄山山脉地形对暴雨降水增幅条件研究[J].高原气象, 32(2): 608-615.DOI: 10.7522/j.issn: 1000-0534.2012.00059.Liu Y L , |
null | |
null | 马振峰, 1994.大气中低频重力波指数与西南低涡发展及其暴雨的关系[J].高原气象, 13(1): 50-56. |
null | |
null | 彭广, 李跃清, 郁淑华, 等, 2019.青藏高原低涡切变线年鉴[M].北京: 科学出版社, 102-103. |
null | |
null | 寿绍文, 励申申, 寿亦萱, 等, 2009.中尺度气象学[M].北京: 气象出版社, 51-58. |
null | |
null | 孙继松, 王华, 2009.重力波对一次雹暴天气过程演变的影响[J].高原气象, 28(1): 165-172. |
null | |
null | 覃卫坚, 寿绍文, 李启泰, 等, 2007.影响惯性重力波活动规律的动力学因子研究[J].高原气象, 26(3): 519-524. |
null | |
null | 王凌梓, 苗峻峰, 韩芙蓉, 2018. 近 10年中国地区地形对降水影响研究进展[J].气象科技, 46(1): 64-75. |
null | |
null | 王思懿, 隆肖, 李超, 等, 2022.祁连山夏季两类地形降水过程的环流特征及成因分析[J].高原气象, 41(3): 593-603.DOI: 10.7522/j.issn.1000-0534.2021.00102.Wang S Y , |
null | |
null | 王文, 刘佳, 蔡晓军, 2011.重力波对青藏高原东侧一次暴雨过程的影响[J].大气科学学报, 34(6): 737-747.DOI: 10.3969/j.issn.1674-7097.2011.06.012.Wang W , |
null | |
null | 王鑫, 李跃清, 郁淑华, 等, 2009.青藏高原低涡活动的统计研究[J].高原气象, 28(1): 64-71. |
null | |
null | 王兴宝, 1996.地形对重力惯性波传播与发展的影响[J].气象科学, 16(1): 1-11. |
null | |
null | 吴池胜, 1994.地形对重力惯性波发展的影响[J].大气科学, 18 (1): 81-88.DOI: 10.3878/j.issn.1006-9895.1994.01.10.Wu C S , 1994.Effect of topography on the development of inertial gravity wave[J].Chinese Journal of Atmospheric Sciences, 18(1): 81-88.DOI: 10.3878/j.issn.1006-9895.1994.01.10 . |
null | 吴迪, 王澄海, 何光碧, 2016.青藏高原地区夏季两次强降水过程中重力波特征分析[J].高原气象, 35(4): 854-864.DOI: 10.7522/j.issn.1000-0534.2015.00066.Wu D , |
null | |
null | |
null | |
null | 谢家旭, 李国平, 2021.重力波与对流耦合作用在一次山地突发性暴雨触发中的机理分析[J].大气科学, 45(3): 617-632.DOI: 10.3878/j.issn.1006-9895.2008.20137.Xie J X , |
null | |
null | 徐枝芳, 龚建东, 王建捷, 等, 2007.复杂地形下地面观测资料同化III: 两种解决模式地形与观测站地形高度差异方法的对比分析[J].大气科学, 33(6): 1137-1147. |
null | |
null | 许美玲, 段旭, 杞明辉, 等, 2011.云南省天气预报员手册[M].北京: 气象出版社, 97-153. |
null | |
null | 许小峰, 孙照渤, 2003.非地转平衡流激发的重力惯性波对梅雨锋暴雨影响的动力学研究[J].气象学报, 61(6): 655-660.DOI: 10.11676/qxxb2003.066.Xu X F , |
null | |
null | 姚秀萍, 马嘉理, 刘俏华, 等, 2021.青藏高原夏季降水研究进展[J].气象科技进展, 11(3): 66-74.DOI: 10.3969/j.issn.2095-1973.2021.03.009.Yao X P , |
null | |
null | 叶笃正, 高由禧, 1979.青藏高原气象学[M].北京: 科学出版社, 122-126. |
null | |
null | 宇如聪, 李建, 陈昊明, 等, 2021.中国降水日变化[M].北京: 科学出版社, 26-44. |
null | |
null | 郁淑华, 高文良, 2006.高原低涡移出高原的观测事实分析[J].气象学报, 64(3): 392-399.DOI: 10.3321/j.issn: 0577-6619. 2006.03.014.Yu S H , |
null | |
null | 郁淑华, 高文良, 2007.近年来影响我国东部洪涝的高原东移涡环流场特征分析[J].高原气象, 26(3): 466-475. |
null | |
null | 郁淑华, 高文良, 2008.青藏高原低涡移出高原的大尺度条件[J].高原气象, 27(6): 1276-1287. |
null | |
null | 郁淑华, 高文良, 彭骏, 2012.青藏高原低涡活动对降水影响的统计分析[J].高原气象, 31(3): 592-604. |
null | |
null | 赵玉春, 王叶红, 2012.风垂直切变对中尺度地形对流降水影响的研究[J].地球物理学报, 55(10): 3213-3229.DOI: 10.6038/j.issn.0001-5733.2012.10.004.Zhao Y C , |
null | |
null | 朱磊磊, 吴增茂, 邰庆国, 等, 2009.山东04.28强飑线过程重力波结构的分析[J].热带气象学报, 25(4): 465-474.DOI: 10. 3969/j.issn.1004-4965.2009.04.012.Zhu L L , |
null | |
null | 朱莉, 丁冶英, 张腾飞, 等, 2010.重力波与低纬高原地区MβCSs地域特征的关系[J].大气科学学报, 33(5): 561-568.DOI: 10.3969/j.issn.1674-7097.2010.05.007.Zhu L , |
null | |
null | |
null |
/
〈 |
|
〉 |